Suppr超能文献

基于现场可编程门阵列的灵敏度编码(一种并行磁共振图像重建方法)硬件加速器

FPGA-based hardware accelerator for SENSE (a parallel MR image reconstruction method).

作者信息

Inam Omair, Basit Abdul, Qureshi Mahmood, Omer Hammad

机构信息

Department of Electrical and Computer Engineering, COMSATS University Islamabad, Pakistan.

Department of Electrical and Computer Engineering, COMSATS University Islamabad, Pakistan; Department of Computer Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.

出版信息

Comput Biol Med. 2020 Feb;117:103598. doi: 10.1016/j.compbiomed.2019.103598. Epub 2020 Jan 3.

Abstract

SENSE (Sensitivity Encoding) is a parallel MRI (pMRI) technique that allows accelerated data acquisition using multiple receiver coils and reconstructs the artifact-free images from the acquired under-sampled data. However, an increasing number of receiver coils has raised the computational demands of pMRI techniques to an extent where the reconstruction time on general purpose computers becomes impractically long for real-time MRI. Field Programmable Gate Arrays (FPGAs) have recently emerged as a viable hardware platform for accelerating pMRI algorithms (e.g. SENSE). However, recent efforts to accelerate SENSE using FPGAs have been focused on a fixed number of receiver coils (L=8) and acceleration factor (A=2). This paper presents a novel 32-bit floating-point FPGA-based hardware accelerator for SENSE (HW-ACC-SENSE); having an ability to work in coordination with an on-chip ARM processor performing reconstructions for different values of L and A. Moreover, the proposed design provides flexibility to integrate multiple units of HW-ACC-SENSE with an on-chip ARM processor, for low-latency image reconstruction. The VIVADO High-Level-Synthesis (HLS) tool has been used to design and implement the HW-ACC-SENSE on the Xilinx FPGA development board (ZCU102). A series of experiments has been performed on in-vivo datasets acquired using 8, 12 and 30 receiver coil elements. The performance of the proposed architecture is compared with the single thread and multi-thread CPU-based implementations of SENSE. The results show that the proposed design withstands the reconstruction quality of the SENSE algorithm while demonstrating a maximum speed-gain up to 298× over the CPU counterparts in our experiments.

摘要

灵敏度编码(SENSE)是一种并行磁共振成像(pMRI)技术,它允许使用多个接收线圈加速数据采集,并从采集的欠采样数据中重建无伪影图像。然而,越来越多的接收线圈将pMRI技术的计算需求提高到了一个程度,即通用计算机上的重建时间对于实时磁共振成像来说变得长得不切实际。现场可编程门阵列(FPGA)最近已成为加速pMRI算法(如SENSE)的可行硬件平台。然而,最近使用FPGA加速SENSE的努力一直集中在固定数量的接收线圈(L = 8)和加速因子(A = 2)上。本文提出了一种基于32位浮点FPGA的SENSE硬件加速器(HW-ACC-SENSE);它能够与片上ARM处理器协同工作,针对不同的L和A值进行重建。此外,所提出的设计提供了灵活性,可将多个HW-ACC-SENSE单元与片上ARM处理器集成,以实现低延迟图像重建。VIVADO高级综合(HLS)工具已用于在Xilinx FPGA开发板(ZCU102)上设计和实现HW-ACC-SENSE。已对使用8、12和30个接收线圈元件采集的体内数据集进行了一系列实验。将所提出架构的性能与基于单线程和多线程CPU的SENSE实现进行了比较。结果表明,所提出的设计在保持SENSE算法重建质量的同时,在我们的实验中比基于CPU的对应实现展示了高达298倍的最大速度提升。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验