a Faculty of Pure Sciences, Department of Chemistry , University of La Plata , Ave 51-337 , La Plata , 1900 , Argentina Fax: E-mail:
Biofouling. 2000;15(1-3):37-47. doi: 10.1080/08927010009386296.
This communication provides an overview of the literature on the biocorrosion of steel in marine media, influenced by the presence of sulphate-reducing bacteria (SRB). Electrochemical aspects, microbial interactions within biofilms, the significance of medium composition and the role of iron sulphides, and hydrogen effects are discussed. A brief description of recent experiments involving the use of electrochemical techniques for corrosion assessment, surface studies employing energy dispersive X-ray analysis (EDAX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and electron microprobe complemented with electron microscopy observations, as well as the application of novel techniques, such as micro sensors and atomic force microscopy, is given. The growth of SRB in marine environments causes significant modifications of many physicochemical parameters at the steel/seawater interface, including local changes in pH and redox potential values, variations in anion and cation concentrations and alteration of the composition and structure of corrosion products. Complex chemical and biological reactions and equilibria are also markedly altered during bacterial proliferation. These effects, which are absent in abiotic media, often lead to significant changes in the corrosion behaviour of steel. The complicated nature of the local environment at the steel/seawater interface is enhanced in the presence of microorganisms and their extracellular polymeric substances (EPS). As a consequence of biofilm heterogeneity, areas with different ion concentrations are formed and the development of corrosion product layers of dissimilar protective characteristics occurs.
本通讯概述了受硫酸盐还原菌 (SRB) 影响的海洋介质中钢的生物腐蚀文献。讨论了电化学方面、生物膜内微生物相互作用、介质组成的重要性和硫化亚铁的作用以及氢效应。简要描述了最近涉及使用电化学技术进行腐蚀评估的实验,使用能量色散 X 射线分析 (EDAX)、X 射线光电子能谱 (XPS)、X 射线衍射 (XRD) 和电子探针进行表面研究,并辅以电子显微镜观察,以及应用新型技术,如微传感器和原子力显微镜。SRB 在海洋环境中的生长会导致钢/海水界面的许多物理化学参数发生显著变化,包括局部 pH 值和氧化还原电位值的变化、阴阳离子浓度的变化以及腐蚀产物组成和结构的改变。在细菌增殖过程中,复杂的化学和生物反应和平衡也会明显改变。这些在非生物介质中不存在的影响,往往会导致钢的腐蚀行为发生显著变化。在微生物及其细胞外聚合物 (EPS) 的存在下,钢/海水界面的局部环境变得更加复杂。由于生物膜的非均质性,形成了具有不同离子浓度的区域,并形成了具有不同保护特性的腐蚀产物层。