Suppr超能文献

纳米磁逻辑:迈向系统级集成的进展。

Nanomagnet logic: progress toward system-level integration.

机构信息

Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.

出版信息

J Phys Condens Matter. 2011 Dec 14;23(49):493202. doi: 10.1088/0953-8984/23/49/493202.

Abstract

Quoting the International Technology Roadmap for Semiconductors (ITRS) 2009 Emerging Research Devices section, 'Nanomagnetic logic (NML) has potential advantages relative to CMOS of being non-volatile, dense, low-power, and radiation-hard. Such magnetic elements are compatible with MRAM technology, which can provide input–output interfaces. Compatibility with MRAM also promises a natural integration of memory and logic. Nanomagnetic logic also appears to be scalable to the ultimate limit of using individual atomic spins.' This article reviews progress toward complete and reliable NML systems. More specifically, we (i) review experimental progress toward fundamental characteristics a device must possess if it is to be used in a digital system, (ii) consider how the NML design space may impact the system-level energy (especially when considering the clock needed to drive a computation), (iii) explain--using both the NML design space and a discussion of clocking as context—how reliable circuit operation may be achieved, (iv) highlight experimental efforts regarding CMOS friendly clock structures for NML systems, (v) explain how electrical I/O could be achieved, and (vi) conclude with a brief discussion of suitable architectures for this technology. Throughout the article, we attempt to identify important areas for future work.

摘要

引用国际半导体技术路线图(ITRS)2009 年新兴研究器件部分的内容,“纳米磁逻辑(NML)相对于 CMOS 具有非易失性、高密度、低功耗和抗辐射等潜在优势。这种磁性元件与 MRAM 技术兼容,MRAM 技术可以提供输入-输出接口。与 MRAM 的兼容性也有望实现内存和逻辑的自然集成。纳米磁逻辑似乎也可以扩展到使用单个原子自旋的最终极限。”本文综述了实现完整可靠的 NML 系统的进展。更具体地说,我们 (i) 回顾了实现数字系统中使用的设备必须具备的基本特性的实验进展,(ii) 考虑了 NML 设计空间如何影响系统级能量(特别是在考虑驱动计算所需的时钟时),(iii) 解释了如何通过 NML 设计空间和时钟讨论上下文实现可靠的电路操作,(iv) 强调了针对 NML 系统的 CMOS 友好时钟结构的实验努力,(v) 解释了如何实现电 I/O,以及 (vi) 简要讨论了这项技术的合适架构。在整篇文章中,我们试图确定未来工作的重要领域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验