Gavagnin Marco, Wanzenboeck Heinz D, Wachter Stefan, Shawrav Mostafa M, Persson Anders, Gunnarsson Klas, Svedlindh Peter, Stöger-Pollach Michael, Bertagnolli Emmerich
Institute of Solid State Electronics, Vienna University of Technology , Floragasse 7/1, A-1040 Vienna, Austria.
ACS Appl Mater Interfaces. 2014 Nov 26;6(22):20254-60. doi: 10.1021/am505785t. Epub 2014 Oct 29.
Nanomagnet logic (NML) is a relatively new computation technology that uses arrays of shape-controlled nanomagnets to enable digital processing. Currently, conventional resist-based lithographic processes limit the design of NML circuitry to planar nanostructures with homogeneous thicknesses. Here, we demonstrate the focused electron beam induced deposition of Fe-based nanomaterial for magnetic in-plane nanowires and out-of-plane nanopillars. Three-dimensional (3D) NML was achieved based on the magnetic coupling between nanowires and nanopillars in a 3D array. Additionally, the same Fe-based nanomaterial was used to produce tilt-corrected high-aspect-ratio probes for the accurate magnetic force microscopy (MFM) analysis of the fabricated 3D NML gate arrays. The interpretation of the MFM measurements was supported by magnetic simulations using the Object Oriented MicroMagnetic Framework. Introducing vertical out-of-plane nanopillars not only increases the packing density of 3D NML but also introduces an extra magnetic degree of freedom, offering a new approach to input/output and processing functionalities in nanomagnetic computing.
纳米磁体逻辑(NML)是一种相对较新的计算技术,它使用形状可控的纳米磁体阵列来实现数字处理。目前,传统的基于电阻的光刻工艺将NML电路的设计限制为具有均匀厚度的平面纳米结构。在此,我们展示了用于面内磁性纳米线和面外纳米柱的铁基纳米材料的聚焦电子束诱导沉积。基于三维(3D)阵列中纳米线和纳米柱之间的磁耦合实现了3D NML。此外,相同的铁基纳米材料被用于制造倾斜校正的高纵横比探针,用于对所制备的3D NML门阵列进行精确的磁力显微镜(MFM)分析。使用面向对象的微磁框架进行的磁模拟支持了MFM测量结果的解释。引入垂直的面外纳米柱不仅增加了3D NML的封装密度,还引入了额外的磁自由度,为纳米磁计算中的输入/输出和处理功能提供了一种新方法。