Department of Biochemistry, University of Vermont, Colchester, Vermont, United States of America.
PLoS One. 2011;6(11):e27852. doi: 10.1371/journal.pone.0027852. Epub 2011 Nov 18.
The view that clot time-based assays do not provide a sufficient assessment of an individual's hemostatic competence, especially in the context of anticoagulant therapy, has provoked a search for new metrics, with significant focus directed at techniques that define the propagation phase of thrombin generation. Here we use our deterministic mathematical model of tissue-factor initiated thrombin generation in combination with reconstructions using purified protein components to characterize how the interplay between anticoagulant mechanisms and variable composition of the coagulation proteome result in differential regulation of the propagation phase of thrombin generation. Thrombin parameters were extracted from computationally derived thrombin generation profiles generated using coagulation proteome factor data from warfarin-treated individuals (N = 54) and matching groups of control individuals (N = 37). A computational clot time prolongation value (cINR) was devised that correlated with their actual International Normalized Ratio (INR) values, with differences between individual INR and cINR values shown to derive from the insensitivity of the INR to tissue factor pathway inhibitor (TFPI). The analysis suggests that normal range variation in TFPI levels could be an important contributor to the failure of the INR to adequately reflect the anticoagulated state in some individuals. Warfarin-induced changes in thrombin propagation phase parameters were then compared to those induced by unfractionated heparin, fondaparinux, rivaroxaban, and a reversible thrombin inhibitor. Anticoagulants were assessed at concentrations yielding equivalent cINR values, with each anticoagulant evaluated using 32 unique coagulation proteome compositions. The analyses showed that no anticoagulant recapitulated all features of warfarin propagation phase dynamics; differences in propagation phase effects suggest that anticoagulants that selectively target fXa or thrombin may provoke fewer bleeding episodes. More generally, the study shows that computational modeling of the response of core elements of the coagulation proteome to a physiologically relevant tissue factor stimulus may improve the monitoring of a broad range of anticoagulants.
人们认为基于凝血时间的检测方法并不能充分评估个体的止血能力,尤其是在抗凝治疗的情况下,这一观点促使人们寻找新的指标,其中很大一部分研究集中在定义凝血酶生成的扩展阶段的技术上。在这里,我们使用组织因子启动的凝血酶生成的确定性数学模型,结合使用纯化蛋白成分进行的重建,来描述抗凝机制和凝血蛋白组的可变组成之间的相互作用如何导致凝血酶生成的扩展阶段的差异调节。从使用来自华法林治疗个体(N=54)和匹配的对照组个体(N=37)的凝血蛋白组因子数据生成的计算得出的凝血酶生成曲线中提取了凝血酶参数。设计了一个计算的凝血时间延长值(cINR),它与他们的实际国际标准化比值(INR)值相关,个体 INR 和 cINR 值之间的差异源自 INR 对组织因子途径抑制剂(TFPI)的不敏感性。该分析表明,TFPI 水平的正常范围变化可能是 INR 不能充分反映某些个体抗凝状态的一个重要因素。然后将华法林诱导的凝血酶生成阶段参数的变化与未分级肝素、磺达肝癸钠、利伐沙班和可逆的凝血酶抑制剂诱导的变化进行比较。在产生等效 cINR 值的浓度下评估了抗凝剂,使用 32 种独特的凝血蛋白组组成评估了每种抗凝剂。分析表明,没有一种抗凝剂能够重现华法林传播阶段动力学的所有特征;传播阶段效应的差异表明,选择性靶向 fXa 或凝血酶的抗凝剂可能会引发更少的出血事件。更一般地说,该研究表明,对凝血蛋白组核心元素对生理相关组织因子刺激的反应进行计算建模可能会改善对广泛的抗凝剂的监测。