Chemistry Research & Discovery and Protein Science, Amgen Inc., Thousand Oaks, California 91320, USA.
Anal Chem. 2012 Jan 3;84(1):262-6. doi: 10.1021/ac203078x. Epub 2011 Dec 19.
The determination of the disulfide bond connectivity in a peptide or protein represents a significant challenge. It is notoriously difficult to use NMR spectroscopy to assign disulfide connectivities because NMR spectra lack direct evidence for disulfide bonds. These bonds are typically inferred from three-dimensional structure calculations, which can result in ambiguous disulfide assignment. Here, we present a new NMR based methodology, in which the disulfide connectivity is obtained by applying Bayesian rules of inference to the local topology of cysteine residues. We illustrate how this approach successfully predicts the disulfide connectivity in proteins for which crystal structures are available in the protein data bank (PDB). We also demonstrate how this methodology is used with experimental NMR data for peptides with complex disulfide topologies, including hepcidin, Kalata-B1, and μ-Conotoxin KIIIA. In the case of μ-Conotoxin KIIIA, the PADLOC connectivity (1-15,2-9,4-16) differs from previously published results; additional evidence is presented demonstrating unequivocally that this newly proposed connectivity is correct.
确定肽或蛋白质中的二硫键连接对于许多人来说是一个重大的挑战。由于 NMR 光谱缺乏对二硫键的直接证据,因此使用 NMR 光谱学来分配二硫键连接性是非常困难的。这些键通常是从三维结构计算中推断出来的,这可能导致二硫键分配不明确。在这里,我们提出了一种新的基于 NMR 的方法,该方法通过将贝叶斯推理规则应用于半胱氨酸残基的局部拓扑结构来获得二硫键连接性。我们说明了如何使用这种方法成功预测蛋白质中二硫键的连接性,这些蛋白质的晶体结构可在蛋白质数据库(PDB)中获得。我们还展示了如何将这种方法与具有复杂二硫键拓扑结构的肽的实验 NMR 数据结合使用,包括肝素有、Kalata-B1 和 μ-Conotoxin KIIIA。在 μ-Conotoxin KIIIA 的情况下,PADLOC 连接性(1-15、2-9、4-16)与之前发表的结果不同;还提供了额外的证据,明确证明了这个新提出的连接性是正确的。