Suppr超能文献

同步皮质神经源的定位。

Localization of synchronous cortical neural sources.

机构信息

Ecole de Technologie Supérieure, Université du Québec, Montreal, QC, Canada.

出版信息

IEEE Trans Biomed Eng. 2013 Mar;60(3):770-80. doi: 10.1109/TBME.2011.2176938. Epub 2011 Nov 22.

Abstract

Neural synchronization is a key mechanism to a wide variety of brain functions, such as cognition, perception, or memory. High temporal resolution achieved by EEG recordings allows the study of the dynamical properties of synchronous patterns of activity at a very fine temporal scale but with very low spatial resolution. Spatial resolution can be improved by retrieving the neural sources of EEG signal, thus solving the so-called inverse problem. Although many methods have been proposed to solve the inverse problem and localize brain activity, few of them target the synchronous brain regions. In this paper, we propose a novel algorithm aimed at localizing specifically synchronous brain regions and reconstructing the time course of their activity. Using multivariate wavelet ridge analysis, we extract signals capturing the synchronous events buried in the EEG and then solve the inverse problem on these signals. Using simulated data, we compare results of source reconstruction accuracy achieved by our method to a standard source reconstruction approach. We show that the proposed method performs better across a wide range of noise levels and source configurations. In addition, we applied our method on real dataset and identified successfully cortical areas involved in the functional network underlying visual face perception. We conclude that the proposed approach allows an accurate localization of synchronous brain regions and a robust estimation of their activity.

摘要

神经同步是多种大脑功能的关键机制,例如认知、感知或记忆。EEG 记录实现的高时间分辨率允许在非常精细的时间尺度上研究活动同步模式的动态特性,但空间分辨率非常低。通过检索 EEG 信号的神经源,可以提高空间分辨率,从而解决所谓的逆问题。尽管已经提出了许多方法来解决逆问题和定位大脑活动,但很少有方法针对同步的大脑区域。在本文中,我们提出了一种新的算法,旨在专门定位同步的大脑区域并重建其活动的时间过程。我们使用多元小波脊分析提取捕捉埋藏在 EEG 中的同步事件的信号,然后在这些信号上解决逆问题。使用模拟数据,我们比较了我们的方法和标准源重建方法在源重建准确性方面的结果。我们表明,该方法在广泛的噪声水平和源配置下表现更好。此外,我们将我们的方法应用于真实数据集,并成功识别出参与视觉面孔感知功能网络的皮质区域。我们得出的结论是,所提出的方法允许对同步的大脑区域进行精确的定位,并对其活动进行稳健的估计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验