Campbell Family Institute for Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada.
Cell Death Dis. 2011 Dec 1;2(12):e236. doi: 10.1038/cddis.2011.114.
Members of the transforming growth factor-β (TGF-β) superfamily participate in numerous biological phenomena in multiple tissues, including in cell proliferation, differentiation, and migration. TGF-β superfamily proteins therefore have prominent roles in wound healing, fibrosis, bone formation, and carcinogenesis. However, the molecular mechanisms regulating these signaling pathways are not fully understood. Here, we describe the regulation of bone morphogenic protein (BMP) signaling by Bat3 (also known as Scythe or BAG6). Bat3 overexpression in murine cell lines suppresses the activity of the Id1 promoter normally induced by BMP signaling. Conversely, Bat3 inactivation enhances the induction of direct BMP target genes, such as Id1, Smad6, and Smad7. Consequently, Bat3 deficiency accelerates the differentiation of primary osteoblasts into bone, with a concomitant increase in the bone differentiation markers Runx2, Osterix, and alkaline phosphatase. Using biochemical and cell biological analyses, we show that Bat3 inactivation sustains the C-terminal phosphorylation and nuclear localization of Smad1, 5, and 8 (Smad1/5/8), thereby enhancing biological responses to BMP treatment. At the mechanistic level, we show that Bat3 interacts with the nuclear phosphatase small C-terminal domain phosphatase (SCP) 2, which terminates BMP signaling by dephosphorylating Smad1/5/8. Notably, Bat3 enhances SCP2-Smad1 interaction only when the BMP signaling pathway is activated. Our results demonstrate that Bat3 is an important regulator of BMP signaling that functions by modulating SCP2-Smad interaction.
转化生长因子-β(TGF-β)超家族成员参与多种组织中的许多生物学现象,包括细胞增殖、分化和迁移。TGF-β超家族蛋白因此在伤口愈合、纤维化、骨形成和癌变中具有突出的作用。然而,调节这些信号通路的分子机制尚不完全清楚。在这里,我们描述了骨形态发生蛋白(BMP)信号的调节因子 Bat3(也称为 Scythe 或 BAG6)。Bat3 在鼠细胞系中的过表达抑制了 BMP 信号通常诱导的 Id1 启动子的活性。相反,Bat3 的失活增强了直接 BMP 靶基因(如 Id1、Smad6 和 Smad7)的诱导。因此,Bat3 的缺失加速了原代成骨细胞向骨的分化,并伴随着骨分化标记物 Runx2、Osterix 和碱性磷酸酶的增加。通过生化和细胞生物学分析,我们表明 Bat3 的失活维持了 Smad1、5 和 8(Smad1/5/8)的 C 端磷酸化和核定位,从而增强了对 BMP 处理的生物学反应。在机制水平上,我们表明 Bat3 与核磷酸酶小 C 端结构域磷酸酶(SCP)2 相互作用,通过去磷酸化 Smad1/5/8 来终止 BMP 信号。值得注意的是,只有当 BMP 信号通路被激活时,Bat3 才会增强 SCP2-Smad1 相互作用。我们的结果表明,Bat3 是 BMP 信号的重要调节因子,通过调节 SCP2-Smad 相互作用来发挥作用。