Chemnitz University of Technology, 09107 Chemnitz, Germany.
J Neurosci. 2011 Nov 30;31(48):17392-405. doi: 10.1523/JNEUROSCI.3407-11.2011.
Spatial perception, the localization of stimuli in space, can rely on visual reference stimuli or on egocentric factors such as a stimulus position relative to eye gaze. In total darkness, only an egocentric reference frame provides sufficient information. When stimuli are briefly flashed around saccades, the localization error reveals potential mechanisms of updating such reference frames as described in several theories and computational models. Recent novel experimental evidence, however, showed that the maximum amount of mislocalization does not scale linearly with saccade amplitude but rather stays below 13° even for long saccades, which is different from predicted by present models. We propose a new model of perisaccadic mislocalization in complete darkness to account for this observation. According to this model, mislocalization arises not on the motor side by comparing a retinal position signal with an extraretinal eye position related signal but by updating stimulus position in visual areas through a combination of proprioceptive eye position and corollary discharge. Simulations with realistic input signals and temporal dynamics show that both signals together are used for spatial updating and in turn bring about perisaccadic mislocalization.
空间感知,即刺激在空间中的定位,可以依赖于视觉参照刺激,也可以依赖于自我中心因素,例如刺激相对于注视眼的位置。在完全黑暗中,只有自我中心参照系提供足够的信息。当刺激在扫视周围短暂闪烁时,定位误差揭示了更新这些参照系的潜在机制,如几个理论和计算模型所描述的。然而,最近的新实验证据表明,最大的定位错误并不与扫视幅度呈线性比例,而是即使对于长扫视,也保持在 13°以下,这与现有模型的预测不同。我们提出了一个新的在完全黑暗中扫视期间的定位错误模型来解释这一观察结果。根据该模型,定位错误不是在运动侧产生的,不是通过将视网膜位置信号与与视网膜外的眼睛位置相关的信号进行比较,而是通过将刺激位置在视觉区域中通过 proprioceptive eye position 和 corollary discharge 的组合进行更新。使用现实输入信号和时间动态进行的模拟表明,这两个信号一起用于空间更新,从而导致扫视期间的定位错误。