State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, P.R. China.
Biochem J. 2012 Mar 1;442(2):283-91. doi: 10.1042/BJ20111598.
UGPase (UDP-glucose pyrophosphorylase) is highly conserved among eukaryotes. UGPase reversibly catalyses the formation of UDP-glucose and is critical in carbohydrate metabolism. Previous studies have mainly focused on the UGPases from plants, fungi and parasites, and indicate that the regulatory mechanisms responsible for the enzyme activity vary among different organisms. In the present study, the crystal structure of hUGPase (human UGPase) was determined and shown to form octamers through end-to-end and side-by-side interactions. The observed latch loop in hUGPase differs distinctly from yUGPase (yeast UGPase), which could explain why hUGPase and yUGPase possess different enzymatic activities. Mutagenesis studies showed that both dissociation of octamers and mutations of the latch loop can significantly affect the UGPase activity. Moreover, this latch effect is also evolutionarily meaningful in UGPase from different species.
尿苷二磷酸葡萄糖焦磷酸化酶(UGPase)在真核生物中高度保守。UGPase 可逆地催化 UDP-葡萄糖的形成,在碳水化合物代谢中至关重要。以前的研究主要集中在植物、真菌和寄生虫的 UGPases 上,表明负责酶活性的调节机制在不同的生物体中有所不同。本研究确定了 hUGPase(人 UGPase)的晶体结构,结果表明 hUGPase 通过端到端和并排相互作用形成八聚体。在 hUGPase 中观察到的闩锁环与 yUGPase(酵母 UGPase)明显不同,这可以解释为什么 hUGPase 和 yUGPase 具有不同的酶活性。突变研究表明,八聚体的解离和闩锁环的突变都可以显著影响 UGPase 的活性。此外,这种闩锁效应在不同物种的 UGPase 中也具有进化意义。