Jumbo-Lucioni Patricia P, Parkinson William M, Kopke Danielle L, Broadie Kendal
Department of Biological Sciences.
Department of Biological Sciences
Hum Mol Genet. 2016 Sep 1;25(17):3699-3714. doi: 10.1093/hmg/ddw217. Epub 2016 Jul 27.
The multiple galactosemia disease states manifest long-term neurological symptoms. Galactosemia I results from loss of galactose-1-phosphate uridyltransferase (GALT), which converts galactose-1-phosphate + UDP-glucose to glucose-1-phosphate + UDP-galactose. Galactosemia II results from loss of galactokinase (GALK), phosphorylating galactose to galactose-1-phosphate. Galactosemia III results from the loss of UDP-galactose 4'-epimerase (GALE), which interconverts UDP-galactose and UDP-glucose, as well as UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine. UDP-glucose pyrophosphorylase (UGP) alternatively makes UDP-galactose from uridine triphosphate and galactose-1-phosphate. All four UDP-sugars are essential donors for glycoprotein biosynthesis with critical roles at the developing neuromuscular synapse. Drosophila galactosemia I (dGALT) and II (dGALK) disease models genetically interact; manifesting deficits in coordinated movement, neuromuscular junction (NMJ) development, synaptic glycosylation, and Wnt trans-synaptic signalling. Similarly, dGALE and dUGP mutants display striking locomotor and NMJ formation defects, including expanded synaptic arbours, glycosylation losses, and differential changes in Wnt trans-synaptic signalling. In combination with dGALT loss, both dGALE and dUGP mutants compromise the synaptomatrix glycan environment that regulates Wnt trans-synaptic signalling that drives 1) presynaptic Futsch/MAP1b microtubule dynamics and 2) postsynaptic Frizzled nuclear import (FNI). Taken together, these findings indicate UDP-sugar balance is a key modifier of neurological outcomes in all three interacting galactosemia disease models, suggest that Futsch homolog MAP1B and the Wnt Frizzled receptor may be disease-relevant targets in epimerase and transferase galactosemias, and identify UGP as promising new potential therapeutic target for galactosemia neuropathology.
多种半乳糖血症疾病状态会表现出长期的神经症状。I型半乳糖血症是由于半乳糖-1-磷酸尿苷转移酶(GALT)缺失所致,该酶可将半乳糖-1-磷酸 + UDP-葡萄糖转化为葡萄糖-1-磷酸 + UDP-半乳糖。II型半乳糖血症是由于半乳糖激酶(GALK)缺失所致,它可将半乳糖磷酸化为半乳糖-1-磷酸。III型半乳糖血症是由于UDP-半乳糖4'-表异构酶(GALE)缺失所致,该酶可使UDP-半乳糖与UDP-葡萄糖相互转化,以及使UDP-N-乙酰半乳糖胺与UDP-N-乙酰葡糖胺相互转化。UDP-葡萄糖焦磷酸化酶(UGP)可由三磷酸尿苷和半乳糖-1-磷酸生成UDP-半乳糖。所有这四种UDP-糖都是糖蛋白生物合成的必需供体,在发育中的神经肌肉突触中起关键作用。果蝇I型半乳糖血症(dGALT)和II型半乳糖血症(dGALK)疾病模型存在基因相互作用;表现为协调运动、神经肌肉接头(NMJ)发育、突触糖基化和Wnt跨突触信号传导方面的缺陷。同样,dGALE和dUGP突变体表现出明显的运动和NMJ形成缺陷,包括突触小枝扩张、糖基化缺失以及Wnt跨突触信号传导的差异变化。与dGALT缺失相结合,dGALE和dUGP突变体都会损害调节Wnt跨突触信号传导的突触基质聚糖环境,而Wnt跨突触信号传导驱动1)突触前Futsch/MAP1b微管动力学和2)突触后卷曲蛋白核输入(FNI)。综上所述这些发现表明,UDP-糖平衡是所有三种相互作用的半乳糖血症疾病模型中神经学结果的关键调节因子,提示Futsch同源物MAP1B和Wnt卷曲蛋白受体可能是表异构酶和转移酶型半乳糖血症中与疾病相关的靶点,并确定UGP是半乳糖血症神经病理学有前景的新潜在治疗靶点。