Department of Neurology, University of Michigan, A. Alfred Taubman Biomedical Sciences Research Building-BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA.
Prog Neurobiol. 2012 May;97(2):239-57. doi: 10.1016/j.pneurobio.2011.11.006. Epub 2011 Nov 23.
Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is the most common inherited spinocerebellar ataxia and one of many polyglutamine neurodegenerative diseases. In MJD, a CAG repeat expansion encodes an abnormally long polyglutamine (polyQ) tract in the disease protein, ATXN3. Here we review MJD, focusing primarily on the function and dysfunction of ATXN3 and on advances toward potential therapies. ATXN3 is a deubiquitinating enzyme (DUB) whose highly specialized properties suggest that it participates in ubiquitin-dependent proteostasis. By virtue of its interactions with VCP, various ubiquitin ligases and other ubiquitin-linked proteins, ATXN3 may help regulate the stability or activity of many proteins in diverse cellular pathways implicated in proteotoxic stress response, aging, and cell differentiation. Expansion of the polyQ tract in ATXN3 is thought to promote an altered conformation in the protein, leading to changes in interactions with native partners and to the formation of insoluble aggregates. The development of a wide range of cellular and animal models of MJD has been crucial to the emerging understanding of ATXN3 dysfunction upon polyQ expansion. Despite many advances, however, the principal molecular mechanisms by which mutant ATXN3 elicits neurotoxicity remain elusive. In a chronic degenerative disease like MJD, it is conceivable that mutant ATXN3 triggers multiple, interconnected pathogenic cascades that precipitate cellular dysfunction and eventual cell death. A better understanding of these complex molecular mechanisms will be important as scientists and clinicians begin to focus on developing effective therapies for this incurable, fatal disorder.
马查多-约瑟夫病(MJD),也称为脊髓小脑共济失调 3 型(SCA3),是最常见的遗传性脊髓小脑共济失调症之一,也是许多多聚谷氨酰胺神经退行性疾病之一。在 MJD 中,CAG 重复扩展在疾病蛋白 ATXN3 中编码异常长的多聚谷氨酰胺(polyQ)片段。在这里,我们将重点回顾 MJD,主要关注 ATXN3 的功能和功能障碍,以及潜在治疗方法的进展。ATXN3 是一种去泛素化酶(DUB),其高度专业化的特性表明它参与了泛素依赖性蛋白稳态。由于其与 VCP、各种泛素连接酶和其他泛素连接蛋白的相互作用,ATXN3 可能有助于调节参与毒性应激反应、衰老和细胞分化的多种细胞途径中许多蛋白质的稳定性或活性。ATXN3 中 polyQ 片段的扩展被认为会促进蛋白质构象的改变,导致与天然伴侣的相互作用发生变化,并形成不溶性聚集体。MJD 的广泛细胞和动物模型的发展对于理解 polyQ 扩展后 ATXN3 功能障碍的新兴理解至关重要。然而,尽管取得了许多进展,但突变 ATXN3 引发神经毒性的主要分子机制仍然难以捉摸。在像 MJD 这样的慢性进行性疾病中,可以想象突变 ATXN3 引发多个相互关联的致病级联反应,导致细胞功能障碍和最终细胞死亡。随着科学家和临床医生开始专注于为这种无法治愈的致命疾病开发有效疗法,更好地了解这些复杂的分子机制将非常重要。