Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.
Neurobiol Dis. 2020 Apr;137:104697. doi: 10.1016/j.nbd.2019.104697. Epub 2019 Nov 26.
Spinocerebellar Ataxia type 3 (SCA3, also known as Machado-Joseph disease) is a neurodegenerative disorder caused by a CAG repeat expansion encoding an abnormally long polyglutamine (polyQ) tract in the disease protein, ataxin-3 (ATXN3). No preventive treatment is yet available for SCA3. Because SCA3 is likely caused by a toxic gain of ATXN3 function, a rational therapeutic strategy is to reduce mutant ATXN3 levels by targeting pathways that control its production or stability. Here, we sought to identify genes that modulate ATXN3 levels as potential therapeutic targets in this fatal disorder. We screened a collection of siRNAs targeting 2742 druggable human genes using a cell-based assay based on luminescence readout of polyQ-expanded ATXN3. From 317 candidate genes identified in the primary screen, 100 genes were selected for validation. Among the 33 genes confirmed in secondary assays, 15 were validated in an independent cell model as modulators of pathogenic ATXN3 protein levels. Ten of these genes were then assessed in a Drosophila model of SCA3, and one was confirmed as a key modulator of physiological ATXN3 abundance in SCA3 neuronal progenitor cells. Among the 15 genes shown to modulate ATXN3 in mammalian cells, orthologs of CHD4, FBXL3, HR and MC3R regulate mutant ATXN3-mediated toxicity in fly eyes. Further mechanistic studies of one of these genes, FBXL3, encoding a F-box protein that is a component of the SKP1-Cullin-F-box (SCF) ubiquitin ligase complex, showed that it reduces levels of normal and pathogenic ATXN3 in SCA3 neuronal progenitor cells, primarily via a SCF complex-dependent manner. Bioinformatic analysis of the 15 genes revealed a potential molecular network with connections to tumor necrosis factor-α/nuclear factor-kappa B (TNF/NF-kB) and extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathways. Overall, we identified 15 druggable genes with diverse functions to be suppressors or enhancers of pathogenic ATXN3 abundance. Among identified pathways highlighted by this screen, the FBXL3/SCF axis represents a novel molecular pathway that regulates physiological levels of ATXN3 protein.
脊髓小脑性共济失调 3 型(SCA3,也称为 Machado-Joseph 病)是一种神经退行性疾病,由疾病蛋白 ataxin-3(ATXN3)中的 CAG 重复扩展编码异常长的多聚谷氨酰胺(polyQ)片段引起。目前尚无预防 SCA3 的治疗方法。由于 SCA3 可能是由 ATXN3 功能的毒性获得引起的,因此一种合理的治疗策略是通过靶向控制其产生或稳定性的途径来降低突变 ATXN3 的水平。在这里,我们试图鉴定调节 ATXN3 水平的基因,作为这种致命疾病的潜在治疗靶点。我们使用基于发光读出多聚 Q 扩展 ATXN3 的细胞测定法,筛选了针对 2742 种可药用人类基因的 siRNA 集合。在初步筛选中鉴定出 317 个候选基因,从中选择了 100 个基因进行验证。在二次测定中验证的 33 个基因中,有 15 个在独立的细胞模型中被验证为致病性 ATXN3 蛋白水平的调节剂。然后在 SCA3 的果蝇模型中评估了这 10 个基因中的 10 个,其中一个被确认为 SCA3 神经元祖细胞中生理 ATXN3 丰度的关键调节剂。在哺乳动物细胞中被证明可调节 ATXN3 的 15 个基因中,CHD4、FBXL3、HR 和 MC3R 的同源基因调节果蝇眼睛中突变 ATXN3 介导的毒性。对其中一个基因 FBXL3 的进一步机制研究表明,FBXL3 编码一种 F 框蛋白,是 SKP1-Cullin-F-box(SCF)泛素连接酶复合物的组成部分,它主要通过 SCF 复合物依赖性方式降低 SCA3 神经元祖细胞中正常和致病性 ATXN3 的水平。对 15 个基因的生物信息学分析显示,存在一个潜在的分子网络,与肿瘤坏死因子-α/核因子-κB(TNF/NF-κB)和细胞外信号调节激酶 1 和 2(ERK1/2)途径连接。总的来说,我们鉴定了 15 个具有不同功能的可用药基因,它们是致病性 ATXN3 丰度的抑制剂或增强剂。在该筛选中突出的鉴定途径中,FBXL3/SCF 轴代表了调节 ATXN3 蛋白生理水平的新分子途径。