Suppr超能文献

Serotonin-induced acute desensitization of serotonin2 receptors in human platelets via a mechanism involving protein kinase C.

作者信息

Kagaya A, Mikuni M, Kusumi I, Yamamoto H, Takahashi K

机构信息

Division of Mental Disorder Research, National Institute of Neuroscience, Tokyo, Japan.

出版信息

J Pharmacol Exp Ther. 1990 Oct;255(1):305-11.

PMID:2213562
Abstract

Serotonin (5-HT)-induced changes in the levels of intracellular Ca++ were analyzed in human platelets, using the Ca+(+)-sensitive dye 1-(2-(5'-carboxyoxazol-2'-yl)-6-aminobenzofuran-5-oxy)-2-(2' -amino-5'- methylphenox)-ethane-N,N,N',N'-tetraacetic acid, pentaacetoxymethyl ester, to investigate the regulation of 5-HT2 receptor function. Serotonin mobilized intracellular Ca++ in a dose-dependent fashion from basal level of 98 +/- 2.7 and up to 211 +/- 5.8 nM with an EC50 value for 5-HT of 0.2 microM. Ketanserin, a 5-HT2 antagonist, reversed the 5-HT (10 microM)-induced Ca++ increase in a dose-dependent manner with an IC50 value of 2 nM. An initial treatment with 10 microM 5-HT abolished the response to a second treatment with 100 microM 5-HT, suggesting that 5-HT evoked an acute desensitization of 5-HT2 receptors in human platelets. Mezerein and phorbol 12-myristate 13-acetate, activators of protein kinase C, inhibited 5-HT-stimulated inositol monophosphate accumulation with IC50 values of 3 and 10 nM, respectively. Furthermore, a protein kinase C inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride prevented the protein kinase C activator-induced inhibition against 5-HT-mediated inositol monophosphate accumulation. Mezerein also inhibited 5-HT (10 microM)-mediated Ca++ release with an IC50 value of 3 nM. 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride prevented the inhibition by mezerein of the 5-HT-stimulated Ca++ increase. Moreover, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride by itself enhanced the Ca++ spike induced by 100 microM 5-HT, the plateau phase induced by 10 microM 5-HT and the second response to 5-HT. These findings suggest that 5-HT2 receptor activation mobilizes intracellular Ca++ in human platelets and that this receptor may be desensitized acutely by a protein kinase C mediated feedback system.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验