Suppr超能文献

两种计算机算法识别手术部位感染的比较。

Comparison of two computer algorithms to identify surgical site infections.

机构信息

Center for Interdisciplinary Research on Antibiotic Resistance, School of Nursing, Columbia University, New York, New York, USA.

出版信息

Surg Infect (Larchmt). 2011 Dec;12(6):459-64. doi: 10.1089/sur.2010.109. Epub 2011 Dec 2.

Abstract

BACKGROUND

Surgical site infections (SSIs), the second most common healthcare-associated infections, increase hospital stay and healthcare costs significantly. Traditional surveillance of SSIs is labor-intensive. Mandatory reporting and new non-payment policies for some SSIs increase the need for efficient and standardized surveillance methods. Computer algorithms using administrative, clinical, and laboratory data collected routinely have shown promise for complementing traditional surveillance.

METHODS

Two computer algorithms were created to identify SSIs in inpatient admissions to an urban, academic tertiary-care hospital in 2007 using the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) diagnosis codes (Rule A) and laboratory culture data (Rule B). We calculated the number of SSIs identified by each rule and both rules combined and the percent agreement between the rules. In a subset analysis, the results of the rules were compared with those of traditional surveillance in patients who had undergone coronary artery bypass graft surgery (CABG).

RESULTS

Of the 28,956 index hospital admissions, 5,918 patients (20.4%) had at least one major surgical procedure. Among those and readmissions within 30 days, the ICD-9-CM-only rule identified 235 SSIs, the culture-only rule identified 287 SSIs; combined, the rules identified 426 SSIs, of which 96 were identified by both rules. Positive and negative agreement between the rules was 36.8% and 97.1%, respectively, with a kappa of 0.34 (95% confidence interval [CI] 0.27-0.41). In the subset analysis of patients who underwent CABG, of the 22 SSIs identified by traditional surveillance, Rule A identified 19 (86.4%) and Rule B identified 13 (59.1%) cases. Positive and negative agreement between Rules A and B within these "positive controls" was 81.3% and 50.0% with a kappa of 0.37 (95% CI 0.04-0.70).

CONCLUSION

Differences in the rates of SSI identified by computer algorithms depend on sources and inherent biases in electronic data. Different algorithms may be appropriate, depending on the purpose of case identification. Further research on the reliability and validity of these algorithms and the impact of changes in reimbursement on clinician practices and electronic reporting is suggested.

摘要

背景

手术部位感染(SSI)是第二大常见的与医疗保健相关的感染,它会显著增加住院时间和医疗保健成本。传统的 SSI 监测需要大量的人力。强制性报告和对某些 SSI 实行新的不付款政策增加了对高效和标准化监测方法的需求。使用常规收集的行政、临床和实验室数据的计算机算法已显示出补充传统监测的潜力。

方法

使用国际疾病分类,第九修订版,临床修正(ICD-9-CM)诊断代码(规则 A)和实验室培养数据(规则 B),创建了两个计算机算法,以识别 2007 年城市学术三级保健医院住院患者的 SSI。我们计算了每个规则和两个规则结合所识别的 SSI 数量,以及规则之间的百分比一致性。在亚组分析中,将规则的结果与接受冠状动脉旁路移植术(CABG)的患者的传统监测结果进行了比较。

结果

在 28956 例索引住院患者中,有 5918 例(20.4%)至少进行了一次主要手术。在这些患者和 30 天内的再入院患者中,仅使用 ICD-9-CM 的规则识别出 235 例 SSI,仅使用培养物的规则识别出 287 例 SSI;两个规则结合识别出 426 例 SSI,其中 96 例被两个规则同时识别出。规则之间的阳性和阴性一致性分别为 36.8%和 97.1%,kappa 值为 0.34(95%置信区间 [CI] 0.27-0.41)。在 CABG 患者的亚组分析中,传统监测识别出的 22 例 SSI 中,规则 A 识别出 19 例(86.4%),规则 B 识别出 13 例(59.1%)。在这些“阳性对照”中,规则 A 和 B 之间的阳性和阴性一致性分别为 81.3%和 50.0%,kappa 值为 0.37(95%置信区间 [CI] 0.04-0.70)。

结论

计算机算法识别的 SSI 率差异取决于电子数据的来源和固有偏差。根据病例识别的目的,可能需要使用不同的算法。建议进一步研究这些算法的可靠性和有效性,以及报销变化对临床医生实践和电子报告的影响。

相似文献

1
Comparison of two computer algorithms to identify surgical site infections.
Surg Infect (Larchmt). 2011 Dec;12(6):459-64. doi: 10.1089/sur.2010.109. Epub 2011 Dec 2.
3
Financial impact of surgical site infections on hospitals: the hospital management perspective.
JAMA Surg. 2013 Oct;148(10):907-14. doi: 10.1001/jamasurg.2013.2246.
4
Highly sensitive and efficient computer-assisted system for routine surveillance for surgical site infection.
Infect Control Hosp Epidemiol. 2006 Aug;27(8):794-801. doi: 10.1086/506393. Epub 2006 Jul 20.
5
A comparison of methods to detect urinary tract infections using electronic data.
Jt Comm J Qual Patient Saf. 2010 Sep;36(9):411-7. doi: 10.1016/s1553-7250(10)36060-0.
9
Risk factors and outcomes associated with surgical site infections after craniotomy or craniectomy.
J Neurosurg. 2014 Feb;120(2):509-21. doi: 10.3171/2013.9.JNS13843. Epub 2013 Nov 8.
10
Can additional information be obtained from claims data to support surgical site infection diagnosis codes?
Infect Control Hosp Epidemiol. 2014 Oct;35 Suppl 3(Suppl 3):S124-32. doi: 10.1086/677830.

引用本文的文献

2
Incidence of Surgical Site Infections and Surgical Antimicrobial Prophylaxis in JNMC, Bhagalpur, India.
J Pharm Bioallied Sci. 2022 Jul;14(Suppl 1):S868-S871. doi: 10.4103/jpbs.jpbs_30_22. Epub 2022 Jul 13.
3
Electronically assisted surveillance systems of healthcare-associated infections: a systematic review.
Euro Surveill. 2020 Jan;25(2). doi: 10.2807/1560-7917.ES.2020.25.2.1900321.
4
Surgical Antimicrobial Prophylaxis and Incidence of Surgical Site Infections at Ethiopian Tertiary-Care Teaching Hospital.
Infect Dis (Auckl). 2019 Nov 27;12:1178633719892267. doi: 10.1177/1178633719892267. eCollection 2019.
6
Changes in the incidence and antimicrobial susceptibility of healthcare-associated infections in a New York hospital system, 2006-2012.
J Prev Med Hyg. 2017 Dec 30;58(4):E294-E301. doi: 10.15167/2421-4248/jpmh2017.58.4.774. eCollection 2017 Dec.
7
Electronic Surveillance of Surgical Site Infections.
Surg Infect (Larchmt). 2017 May/Jun;18(4):498-502. doi: 10.1089/sur.2016.262. Epub 2017 Apr 12.
8
Trends in mortality, length of stay, and hospital charges associated with health care-associated infections, 2006-2012.
Am J Infect Control. 2016 Sep 1;44(9):983-9. doi: 10.1016/j.ajic.2016.03.010. Epub 2016 May 17.
10
Challenges Associated With Using Large Data Sets for Quality Assessment and Research in Clinical Settings.
Policy Polit Nurs Pract. 2015 Aug;16(3-4):117-24. doi: 10.1177/1527154415603358. Epub 2015 Sep 8.

本文引用的文献

1
[Use of the French medico-administrative database (PMSI) to detect nosocomial infections in the University hospital of Lyon].
Rev Epidemiol Sante Publique. 2011 Feb;59(1):3-14. doi: 10.1016/j.respe.2010.08.003. Epub 2011 Jan 14.
2
Assessing specific secondary ICD-9-CM codes as potential predictors of surgical site infections.
Am J Infect Control. 2010 Nov;38(9):701-5. doi: 10.1016/j.ajic.2010.03.015. Epub 2010 Jul 1.
3
CMS changes in reimbursement for HAIs: setting a research agenda.
Med Care. 2010 May;48(5):433-9. doi: 10.1097/MLR.0b013e3181d5fb3f.
4
Automated detection of infectious disease outbreaks in hospitals: a retrospective cohort study.
PLoS Med. 2010 Feb 23;7(2):e1000238. doi: 10.1371/journal.pmed.1000238.
5
Automated surveillance of health care-associated infections.
Clin Infect Dis. 2009 May 1;48(9):1268-75. doi: 10.1086/597591.
6
Validity of electronic surveillance systems: a systematic review.
J Hosp Infect. 2008 Jul;69(3):220-9. doi: 10.1016/j.jhin.2008.04.030. Epub 2008 Jun 11.
10
The changing face of surveillance for health care-associated infections.
Clin Infect Dis. 2004 Nov 1;39(9):1347-52. doi: 10.1086/425000. Epub 2004 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验