Suppr超能文献

比较活动分析以提高药物检测的准确性和灵敏度。

Comparing activity analyses for improved accuracy and sensitivity of drug detection.

机构信息

Pfizer Global Research and Development, Ramsgate Road, Sandwich, Kent CT13 9NJ, UK.

出版信息

J Neurosci Methods. 2012 Mar 15;204(2):374-8. doi: 10.1016/j.jneumeth.2011.11.006. Epub 2011 Nov 25.

Abstract

Activity (or locomotion) can be one of the most sensitive and broadly affected translatable biomarkers of drug or disease. However activity data often have variance heterogeneity and periods with zero activity, and thus is usually not normally distributed giving the possibility of false interpretation of the data. We attempt to address this issue by developing and comparing different analysis techniques. These include transforming the data (square root and ln) as well as determining the probability of activity. In order to comprehensively assess these analysis techniques they are applied to a variety of different activity data sets, which have varying pharmacological manipulation or diurnal cycle state. These analyses indicate that activity data can firstly be improved by a square root transform of the data, which reduces variance heterogeneity. A further improved step is to analyse the "probability of moving", which is the most sensitive methodology to detect a change in activity. Thus analysis of the powerful non-invasive physiological marker activity and locomotion can be easily and simply modified to improve accuracy and sensitivity in disease or drug detection.

摘要

活动(或运动)可以是药物或疾病最敏感和广泛影响的可翻译生物标志物之一。然而,活动数据通常具有方差异质性和零活动期,因此通常不符合正态分布,有可能对数据进行错误解释。我们试图通过开发和比较不同的分析技术来解决这个问题。这些技术包括对数据进行转换(平方根和自然对数)以及确定活动的概率。为了全面评估这些分析技术,我们将它们应用于各种不同的活动数据集,这些数据集具有不同的药理学处理或昼夜周期状态。这些分析表明,活动数据首先可以通过对数据进行平方根转换来改善,这可以减少方差异质性。进一步的改进步骤是分析“移动的概率”,这是检测活动变化最敏感的方法。因此,活动和运动这一强大的非侵入性生理标记物的分析可以很容易地进行简单的修改,以提高疾病或药物检测的准确性和敏感性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验