Fernandez Francisco J, de Vries Dominique, Peña-Soler Esther, Coll Miquel, Christen Philipp, Gehring Heinz, Vega M Cristina
Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (Spanish National Research Council, CSIC), Madrid, Spain.
Biochim Biophys Acta. 2012 Feb;1824(2):339-49. doi: 10.1016/j.bbapap.2011.10.016. Epub 2011 Nov 23.
The joint substitution of three active-site residues in Escherichia coli (L)-aspartate aminotransferase increases the ratio of l-cysteine sulfinate desulfinase to transaminase activity 10(5)-fold. This change in reaction specificity results from combining a tyrosine-shift double mutation (Y214Q/R280Y) with a non-conservative substitution of a substrate-binding residue (I33Q). Tyr214 hydrogen bonds with O3 of the cofactor and is close to Arg374 which binds the α-carboxylate group of the substrate; Arg280 interacts with the distal carboxylate group of the substrate; and Ile33 is part of the hydrophobic patch near the entrance to the active site, presumably participating in the domain closure essential for the transamination reaction. In the triple-mutant enzyme, k(cat)' for desulfination of l-cysteine sulfinate increased to 0.5s(-1) (from 0.05s(-1) in wild-type enzyme), whereas k(cat)' for transamination of the same substrate was reduced from 510s(-1) to 0.05s(-1). Similarly, k(cat)' for β-decarboxylation of l-aspartate increased from<0.0001s(-1) to 0.07s(-1), whereas k(cat)' for transamination was reduced from 530s(-1) to 0.13s(-1). l-Aspartate aminotransferase had thus been converted into an l-cysteine sulfinate desulfinase that catalyzes transamination and l-aspartate β-decarboxylation as side reactions. The X-ray structures of the engineered l-cysteine sulfinate desulfinase in its pyridoxal-5'-phosphate and pyridoxamine-5'-phosphate form or liganded with a covalent coenzyme-substrate adduct identified the subtle structural changes that suffice for generating desulfinase activity and concomitantly abolishing transaminase activity toward dicarboxylic amino acids. Apparently, the triple mutation impairs the domain closure thus favoring reprotonation of alternative acceptor sites in coenzyme-substrate intermediates by bulk water.
在大肠杆菌(L)-天冬氨酸转氨酶中,三个活性位点残基的联合取代使L-半胱氨酸亚磺酸盐脱亚磺基酶与转氨酶活性的比率提高了10^5倍。反应特异性的这种变化是由于酪氨酸移位双突变(Y214Q/R280Y)与底物结合残基的非保守取代(I33Q)相结合所致。Tyr214与辅因子的O3形成氢键,且靠近结合底物α-羧基的Arg374;Arg280与底物的远端羧基相互作用;Ile33是活性位点入口附近疏水区域的一部分,可能参与转氨反应所必需的结构域闭合。在三突变酶中,L-半胱氨酸亚磺酸盐脱亚磺基反应的k(cat)'增加到0.5s^(-1)(野生型酶中为0.05s^(-1)),而相同底物转氨反应的k(cat)'从510s^(-1)降低到0.05s^(-1)。同样,L-天冬氨酸β-脱羧反应的k(cat)'从<0.0001s^(-1)增加到0.07s^(-1),而转氨反应的k(cat)'从530s^(-1)降低到0.13s^(-1)。因此,L-天冬氨酸转氨酶已转变为一种L-半胱氨酸亚磺酸盐脱亚磺基酶,该酶催化转氨反应以及作为副反应的L-天冬氨酸β-脱羧反应。工程化的L-半胱氨酸亚磺酸盐脱亚磺基酶在其磷酸吡哆醛和磷酸吡哆胺形式下或与共价辅酶-底物加合物结合的X射线结构确定了足以产生脱亚磺基酶活性并同时消除对二羧酸氨基酸的转氨酶活性的细微结构变化。显然,三突变损害了结构域闭合,从而有利于辅酶-底物中间体中替代受体位点被大量水再质子化。