Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9057, USA.
Eye Contact Lens. 2012 Jan;38(1):7-15. doi: 10.1097/ICL.0b013e31823bad0e.
To evaluate neutrophil-enhanced Pseudomonas aeruginosa (PA) biofilm formation on silicone hydrogel contact lenses and to determine the effect of epithelial biodebris on PA adherence in contact lens storage cases.
A fully invasive PA corneal isolate stably conjugated to green fluorescent protein was used. Unworn lotrafilcon A contact lenses were incubated at various ratios of PA to polymorphonuclear neutrophil (PMN) for 24 hours at 37°C. Lens-associated PA was evaluated using laser scanning confocal microscopy and nonviable PA were visualized using propidium iodide. Viable bacteria were enumerated by colony-forming unit (CFU) analysis. For acute epithelial cell studies, PA viability was determined after coincubation with freeze-thaw epithelial cell lysates in 96-well polystyrene plates. Levels of residual cellular debris and bacterial viability were further assessed in used contact lens storage cases.
Laser scanning confocal microscopy demonstrated that cotreatment with PMA-stimulated neutrophils increased PA adherence over 24 hours to lens surfaces with a striking alteration of PA architecture. Propidium iodide staining showed that the adherent bacteria consisted of a mixture of viable and nonviable PA; a PMN-associated increase in viable PA was confirmed by CFU (PA:PMN 0.1:1, P = 0.025; PA:PMN 1:1, P = 0.005). Acute epithelial cell debris studies revealed a significant increase in viable PA in 96-well plates in the presence of epithelial freeze-thaw lysates (PA:debris 1:1, P = 0.002; PA:debris 100:1, P = 0.002). Crystal violet staining of used lens storage cases revealed residual cellular debris at all time points, which was independent of microbial contamination; all lens cases used for periods of 9 months or more were uniformly associated with high levels of viable microorganisms.
These results demonstrate that prolonged corneal inflammation with the presence of PMNs when confronted with simultaneous PA challenge in extended contact lens wear has the potential to stimulate biofilm formation on silicone hydrogel contact lenses. These findings further suggest that a persistent buildup of extracellular debris in lens storage cases may contribute to the heavy biofilms reported on these surfaces.
评估嗜中性粒细胞增强铜绿假单胞菌(PA)生物膜在硅水凝胶隐形眼镜上的形成,并确定上皮细胞碎片对隐形眼镜储存盒中 PA 粘附的影响。
使用稳定连接绿色荧光蛋白的完全侵袭性 PA 角膜分离株。将未佩戴的 lotrafilcon A 隐形眼镜以不同比例的 PA 与多形核中性粒细胞(PMN)孵育 24 小时,温度为 37°C。使用激光扫描共聚焦显微镜评估镜片相关的 PA,并使用碘化丙啶可视化非存活的 PA。通过菌落形成单位(CFU)分析计数存活的细菌。对于急性上皮细胞研究,在 96 孔聚苯乙烯板中与冻融上皮细胞裂解物共孵育后,确定 PA 的存活能力。进一步评估了使用过的隐形眼镜储存盒中的残留细胞碎片和细菌活力水平。
激光扫描共聚焦显微镜显示,与 PMA 刺激的中性粒细胞共同处理可在 24 小时内增加 PA 在镜片表面的粘附,从而显著改变 PA 结构。碘化丙啶染色表明,粘附的细菌由存活和非存活的 PA 混合组成;CFU 证实了与 PMN 相关的存活 PA 增加(PA:PMN 0.1:1,P = 0.025;PA:PMN 1:1,P = 0.005)。急性上皮细胞碎片研究显示,在存在上皮细胞冻融裂解物的情况下,96 孔板中存活的 PA 显著增加(PA:碎片 1:1,P = 0.002;PA:碎片 100:1,P = 0.002)。用过的隐形眼镜储存盒的结晶紫染色显示,所有时间点都残留有细胞碎片,这与微生物污染无关;所有使用时间超过 9 个月的隐形眼镜盒都与高水平的存活微生物均匀相关。
这些结果表明,在延长接触镜佩戴期间同时面临 PA 挑战时,长时间的角膜炎症伴有 PMN 的存在,有可能刺激硅水凝胶隐形眼镜上的生物膜形成。这些发现进一步表明,隐形眼镜储存盒中细胞外碎片的持续积累可能导致这些表面上报道的厚重生物膜。