Genome Structure and Regulation, School of Biomedical Science and Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
PLoS One. 2011;6(11):e28171. doi: 10.1371/journal.pone.0028171. Epub 2011 Nov 28.
Hox genes play important roles in haematopoietic development in mammals. ASH1 is a member of the trithorax group (trxG) that is required for proper expression of Hox genes and is preferentially expressed in haematopoietic stem cells. We have recently reported that ASH1 methylates histone H3 at lysine 36 (K36) but its biological function has remained elusive. Here we show that ASH1 regulates Hox gene expression positively and negatively in a leukemic cell line K562 and is required for myelomonocytic differentiation of murine haematopoietic stem cells. ASH1 binds to endogenous Hox loci in K562 cells and its knockdown causes reduced expression of Hox genes. In addition, ASH1 and MLL1 induce more than 100-fold activation of Hox promoters in HeLa cells if expressed simultaneously but not individually. Notably, ASH1 harbouring a point mutation that kills methyltransferase activity is more efficient than wild type ASH1 in Hox gene activation, indicating that K36 methylation is not a prerequisite for Hox gene expression. Moreover, tethering wild type or catalytically inactive methyltransferase domain of ASH1 to a heterologous promoter causes downregulation or upregulation, respectively, of transcription, supporting a hypothesis that K36 methylation imparts repression. Knockdown of ASH1 in K562 cells in vitro causes increased expression of ε-globin gene and reduced expression of myelomonocytic markers GPIIb and GPIIIa, whereas knockdown of ASH1 in murine haematopoietic stem cells in vivo results in decreased number of macrophages and granulocytes, a phenotype similar to that induced by loss of mll1 function. Taken together, our data suggest that ASH1 and MLL1 synergize in activation of Hox genes and thereby regulate development of myelomonocytic lineages from haematopoietic stem cells.
Hox 基因在哺乳动物的造血发育中发挥重要作用。ASH1 是转录共激活物 trxG 家族的成员,对于 Hox 基因的正确表达是必需的,并且在造血干细胞中优先表达。我们最近报道称,ASH1 可以使组蛋白 H3 赖氨酸 36(K36)发生甲基化,但它的生物学功能仍然难以捉摸。在这里,我们表明 ASH1 在白血病细胞系 K562 中正向和负向调节 Hox 基因的表达,并且对于骨髓造血干细胞向髓系细胞分化是必需的。ASH1 与 K562 细胞中的内源性 Hox 基因座结合,其敲低导致 Hox 基因的表达降低。此外,如果同时表达而不是单独表达,ASH1 和 MLL1 会使 HeLa 细胞中的 Hox 启动子激活超过 100 倍。值得注意的是,携带失活甲基转移酶活性的点突变的 ASH1 比野生型 ASH1 在 Hox 基因激活中更有效,表明 K36 甲基化不是 Hox 基因表达的前提。此外,将野生型或催化失活的 ASH1 甲基转移酶结构域连接到异源启动子上分别导致转录的下调或上调,支持了 K36 甲基化赋予抑制的假说。体外敲低 K562 细胞中的 ASH1 会导致 ε-珠蛋白基因的表达增加和髓系标志物 GPIIb 和 GPIIIa 的表达减少,而体内敲低造血干细胞中的 ASH1 会导致巨噬细胞和粒细胞数量减少,这与 mll1 功能丧失引起的表型相似。总之,我们的数据表明,ASH1 和 MLL1 协同激活 Hox 基因,从而调节造血干细胞向髓系细胞的发育。