Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.
Biomacromolecules. 2012 Jan 9;13(1):180-6. doi: 10.1021/bm201421g. Epub 2011 Dec 13.
A multilayered nanofibrous microfiltration (MF) membrane system with high flux, low pressure drop, and high retention capability against both bacteria and bacteriophages (a virus model) was developed by impregnating ultrafine cellulose nanowhiskers (diameter about 5 nm) into an electrospun polyacrylonitrile (PAN) nanofibrous scaffold (fiber diameter about 150 nm) supported by a poly(ethylene terephthalate) (PET) nonwoven substrate (fiber diameter about 20 μm). The cellulose nanowhiskers were anchored on the PAN nanofiber surface, forming a cross-linked nanostructured mesh with very high surface-to-volume ratio and a negatively charged surface. The mean pore size and pore size distribution of this MF system could be adjusted by the loading of cellulose nanowhiskers, where the resulting membrane not only possessed good mechanical properties but also high surface charge density confirmed by the conductivity titration and zeta potential measurements. The results indicated that a test cellulose nanowhisker-based MF membrane exhibited 16 times higher adsorption capacity against a positively charged dye over a commercial nitrocellulose-based MF membrane. This experimental membrane also showed full retention capability against bacteria, for example, E. coli and B. diminuta (log reduction value (LRV) larger than 6) and decent retention against bacteriophage MS2 (LRV larger than 2).
一种具有高通量、低压降和高保留能力的多层纳米纤维微滤(MF)膜系统,可同时抵抗细菌和噬菌体(病毒模型),通过将超细纤维素纳米纤维(直径约 5nm)注入到由聚对苯二甲酸乙二醇酯(PET)无纺基底(纤维直径约 20μm)支撑的电纺聚丙烯腈(PAN)纳米纤维支架(纤维直径约 150nm)中而开发。纤维素纳米纤维被固定在 PAN 纳米纤维表面上,形成具有非常高的表面积与体积比和带负电荷表面的交联纳米结构网格。该 MF 系统的平均孔径和孔径分布可以通过纤维素纳米纤维的负载进行调节,所得的膜不仅具有良好的机械性能,而且通过电导率滴定和zeta 电位测量证实具有较高的表面电荷密度。结果表明,与商业硝化纤维素基 MF 膜相比,基于纤维素纳米纤维的 MF 膜对带正电荷的染料具有 16 倍的吸附容量。该实验膜还对细菌(例如大肠杆菌和短小芽孢杆菌(对数减少值(LRV)大于 6))具有完全的保留能力,对噬菌体 MS2 也具有良好的保留能力(LRV 大于 2)。