Suppr超能文献

基于机器学习方法,利用周的伪氨基酸组成概念对金属蛋白酶家族进行预测。

Prediction of metalloproteinase family based on the concept of Chou's pseudo amino acid composition using a machine learning approach.

作者信息

Mohammad Beigi Majid, Behjati Mohaddeseh, Mohabatkar Hassan

机构信息

Department of Biomedical Engineering, University of Isfahan, Isfahan, Iran.

出版信息

J Struct Funct Genomics. 2011 Dec;12(4):191-7. doi: 10.1007/s10969-011-9120-4. Epub 2011 Dec 3.

Abstract

Matrix metalloproteinase (MMPs) and disintegrin and metalloprotease (ADAMs) belong to the zinc-dependent metalloproteinase family of proteins. These proteins participate in various physiological and pathological states. Thus, prediction of these proteins using amino acid sequence would be helpful. We have developed a method to predict these proteins based on the features derived from Chou's pseudo amino acid composition (PseAAC) server and support vector machine (SVM) as a powerful machine learning approach. With this method, for ADAMs and MMPs families, an overall accuracy and Matthew's correlation coefficient (MCC) of 95.89 and 0.90% were achieved respectively. Furthermore, the method is able to predict two major subclasses of MMP family; Furin-activated secreted MMPs and Type II trans-membrane; with MCC of 0.89 and 0.91%, respectively. The overall accuracy for Furin-activated secreted MMPs and Type II trans-membrane was 98.18 and 99.07, respectively. Our data demonstrates an effective classification of Metalloproteinase family based on the concept of PseAAC and SVM.

摘要

基质金属蛋白酶(MMPs)和去整合素金属蛋白酶(ADAMs)属于锌依赖性金属蛋白酶家族。这些蛋白质参与各种生理和病理状态。因此,利用氨基酸序列对这些蛋白质进行预测将有所帮助。我们基于从周氏伪氨基酸组成(PseAAC)服务器获得的特征以及作为一种强大机器学习方法的支持向量机(SVM),开发了一种预测这些蛋白质的方法。使用这种方法,对于ADAMs和MMPs家族,总体准确率和马修斯相关系数(MCC)分别达到了95.89%和0.90%。此外,该方法能够预测MMP家族的两个主要亚类;弗林蛋白酶激活的分泌型MMPs和II型跨膜型;其MCC分别为0.89%和0.91%。弗林蛋白酶激活的分泌型MMPs和II型跨膜型的总体准确率分别为98.18%和99.07%。我们的数据表明基于PseAAC和SVM概念对金属蛋白酶家族进行了有效的分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验