Suppr超能文献

一种用于识别抗癌肽的新型基于序列的混合模型。

A Novel Hybrid Sequence-Based Model for Identifying Anticancer Peptides.

作者信息

Xu Lei, Liang Guangmin, Wang Longjie, Liao Changrui

机构信息

School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen 518060, China.

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

出版信息

Genes (Basel). 2018 Mar 13;9(3):158. doi: 10.3390/genes9030158.

Abstract

Cancer is a serious health issue worldwide. Traditional treatment methods focus on killing cancer cells by using anticancer drugs or radiation therapy, but the cost of these methods is quite high, and in addition there are side effects. With the discovery of anticancer peptides, great progress has been made in cancer treatment. For the purpose of prompting the application of anticancer peptides in cancer treatment, it is necessary to use computational methods to identify anticancer peptides (ACPs). In this paper, we propose a sequence-based model for identifying ACPs (SAP). In our proposed SAP, the peptide is represented by 400D features or 400D features with g-gap dipeptide features, and then the unrelated features are pruned using the maximum relevance-maximum distance method. The experimental results demonstrate that our model performs better than some existing methods. Furthermore, our model has also been extended to other classifiers, and the performance is stable compared with some state-of-the-art works.

摘要

癌症是全球范围内严重的健康问题。传统治疗方法侧重于使用抗癌药物或放射疗法来杀死癌细胞,但这些方法成本相当高,而且还有副作用。随着抗癌肽的发现,癌症治疗取得了巨大进展。为了促进抗癌肽在癌症治疗中的应用,有必要使用计算方法来识别抗癌肽(ACP)。在本文中,我们提出了一种基于序列的抗癌肽识别模型(SAP)。在我们提出的SAP中,肽由400维特征或带有g间隔二肽特征的400维特征表示,然后使用最大相关性-最大距离方法修剪无关特征。实验结果表明,我们的模型比一些现有方法表现更好。此外,我们的模型还扩展到了其他分类器,与一些最先进的工作相比,性能稳定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验