Suppr超能文献

iACP:一种用于鉴定抗癌肽的基于序列的工具。

iACP: a sequence-based tool for identifying anticancer peptides.

作者信息

Chen Wei, Ding Hui, Feng Pengmian, Lin Hao, Chou Kuo-Chen

机构信息

Department of Physics, School of Sciences, Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, China.

Gordon Life Science Institute, Belmont, Massachusetts, United States of America.

出版信息

Oncotarget. 2016 Mar 29;7(13):16895-909. doi: 10.18632/oncotarget.7815.

Abstract

Cancer remains a major killer worldwide. Traditional methods of cancer treatment are expensive and have some deleterious side effects on normal cells. Fortunately, the discovery of anticancer peptides (ACPs) has paved a new way for cancer treatment. With the explosive growth of peptide sequences generated in the post genomic age, it is highly desired to develop computational methods for rapidly and effectively identifying ACPs, so as to speed up their application in treating cancer. Here we report a sequence-based predictor called iACP developed by the approach of optimizing the g-gap dipeptide components. It was demonstrated by rigorous cross-validations that the new predictor remarkably outperformed the existing predictors for the same purpose in both overall accuracy and stability. For the convenience of most experimental scientists, a publicly accessible web-server for iACP has been established at http://lin.uestc.edu.cn/server/iACP, by which users can easily obtain their desired results.

摘要

癌症仍然是全球主要的杀手。传统的癌症治疗方法昂贵且对正常细胞有一些有害的副作用。幸运的是,抗癌肽(ACPs)的发现为癌症治疗开辟了一条新途径。随着后基因组时代产生的肽序列的爆炸式增长,迫切需要开发快速有效地识别抗癌肽的计算方法,以加速其在癌症治疗中的应用。在此,我们报告一种基于序列的预测器,称为iACP,它是通过优化g-gap二肽成分的方法开发的。严格的交叉验证表明,在总体准确性和稳定性方面,新的预测器在相同目的上显著优于现有的预测器。为了方便大多数实验科学家,已在http://lin.uestc.edu.cn/server/iACP建立了一个可供公众访问的iACP网络服务器,用户可以通过该服务器轻松获得他们想要的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ec9/4941358/5f7372f4b3e9/oncotarget-07-16895-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验