Suppr超能文献

根据第三磨牙的分类,评估检查者的一致性。

Evaluation of the agreement by examiners according to classifications of third molars.

机构信息

Universidade Federal de Sergipe, Hospital Universitário, Departamento de Odontologia, Rua Cláudio Batista s/n, Bairro Sanatório, Aracaju, SE, Brasil.

出版信息

Med Oral Patol Oral Cir Bucal. 2012 Mar 1;17(2):e281-6. doi: 10.4317/medoral.17483.

Abstract

OBJECTIVES

This study recorded and evaluated the intra- and inter-group agreement degree by different examiners for the classification of lower third molars according to both the Winter's and Pell & Gregory's systems.

STUDY DESIGN

An observational and cross-sectional study was realized with forty lower third molars analyzed from twenty digital panoramic radiographs. Four examiner groups (undergraduates, maxillofacial surgeons, oral radiologists and clinical dentists) from Aracaju, Sergipe, Brazil, classified them in relation to angulation, class and position. The variance test (ANOVA) was applied in the examiner findings with significance level of p<0.05 and confidence intervals of 95%.

RESULTS

Intra- and inter-group agreement was observed in Winter's classification system among all examiners. Pell & Gregory's classification system showed an average intra-group agreement and a statistical significant difference to position variable in inter-group analysis with greater disagreement to the clinical dentists group (p<0.05).

CONCLUSIONS

High reproducibility was associated to Winter's classification, whereas the system proposed by Pell & Gregory did not demonstrate appropriate levels of reliability.

摘要

目的

本研究记录并评估了不同检查者在根据 Winter 系统和 Pell & Gregory 系统对下颌第三磨牙进行分类时的组内和组间一致性程度。

研究设计

这是一项观察性和横断面研究,共分析了来自巴西塞尔希培州阿拉卡茹的 40 颗下颌第三磨牙的 20 张数字化全景片。共有 4 个检查者小组(本科生、颌面外科医生、口腔放射科医生和临床牙医)对其进行了分类,涉及角度、类别和位置。采用方差检验(ANOVA)对检查者的发现进行分析,显著性水平为 p<0.05,置信区间为 95%。

结果

在所有检查者中,Winter 分类系统均观察到组内和组间一致性。Pell & Gregory 分类系统在组内分析中表现出平均的组内一致性,而在组间分析中与位置变量存在统计学显著差异,与临床牙医组的一致性较差(p<0.05)。

结论

Winter 分类具有较高的可重复性,而 Pell & Gregory 提出的系统则显示出适当的可靠性水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d818/3448327/36e5de9a10ff/medoral-17-e281-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验