Biophysics Program, Stanford University, Stanford, CA 94305, USA.
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20573-8. doi: 10.1073/pnas.1106516108. Epub 2011 Dec 5.
Atomic-accuracy structure prediction of macromolecules should be achievable by optimizing a physically realistic energy function but is presently precluded by incomplete sampling of a biopolymer's many degrees of freedom. We present herein a working hypothesis, called the "stepwise ansatz," for recursively constructing well-packed atomic-detail models in small steps, enumerating several million conformations for each monomer, and covering all build-up paths. By making use of high-performance computing and the Rosetta framework, we provide first tests of this hypothesis on a benchmark of 15 RNA loop-modeling problems drawn from riboswitches, ribozymes, and the ribosome, including 10 cases that are not solvable by current knowledge-based modeling approaches. For each loop problem, this deterministic stepwise assembly method either reaches atomic accuracy or exposes flaws in Rosetta's all-atom energy function, indicating the resolution of the conformational sampling bottleneck. As a further rigorous test, we have carried out a blind all-atom prediction for a noncanonical RNA motif, the C7.2 tetraloop/receptor, and validated this model through nucleotide-resolution chemical mapping experiments. Stepwise assembly is an enumerative, ab initio build-up method that systematically outperforms existing Monte Carlo and knowledge-based methods for 3D structure prediction.
大分子的原子级精度结构预测应该可以通过优化物理上合理的能量函数来实现,但目前由于对生物聚合物的许多自由度的采样不完整而受到限制。我们在此提出了一个名为“逐步假设”的工作假设,用于以小步递归地构建紧密堆积的原子细节模型,为每个单体枚举数百万个构象,并覆盖所有构建路径。通过利用高性能计算和 Rosetta 框架,我们在来自核糖开关、核酶和核糖体的 15 个 RNA 环建模问题基准测试中对该假设进行了首次测试,其中包括 10 个当前基于知识的建模方法无法解决的案例。对于每个环问题,这种确定性的逐步组装方法要么达到原子精度,要么暴露 Rosetta 全原子能量函数的缺陷,表明构象采样瓶颈得到了解决。作为进一步的严格测试,我们对非规范 RNA 基序 C7.2 四联体/受体进行了盲目的全原子预测,并通过核苷酸分辨率的化学映射实验验证了该模型。逐步组装是一种枚举的、从头开始的构建方法,在 3D 结构预测方面系统地优于现有的蒙特卡罗和基于知识的方法。