Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA.
Biophysics Program, Stanford University, Stanford, CA 94305, USA.
Sci Adv. 2018 May 25;4(5):eaar5316. doi: 10.1126/sciadv.aar5316. eCollection 2018 May.
Prediction of RNA structure from nucleotide sequence remains an unsolved grand challenge of biochemistry and requires distinct concepts from protein structure prediction. Despite extensive algorithmic development in recent years, modeling of noncanonical base pairs of new RNA structural motifs has not been achieved in blind challenges. We report a stepwise Monte Carlo (SWM) method with a unique add-and-delete move set that enables predictions of noncanonical base pairs of complex RNA structures. A benchmark of 82 diverse motifs establishes the method's general ability to recover noncanonical pairs ab initio, including multistrand motifs that have been refractory to prior approaches. In a blind challenge, SWM models predicted nucleotide-resolution chemical mapping and compensatory mutagenesis experiments for three in vitro selected tetraloop/receptors with previously unsolved structures (C7.2, C7.10, and R1). As a final test, SWM blindly and correctly predicted all noncanonical pairs of a Zika virus double pseudoknot during a recent community-wide RNA-Puzzle. Stepwise structure formation, as encoded in the SWM method, enables modeling of noncanonical RNA structure in a variety of previously intractable problems.
从核苷酸序列预测 RNA 结构仍然是生物化学领域未解决的重大挑战,需要与蛋白质结构预测有不同的概念。尽管近年来在算法开发方面取得了广泛进展,但在盲测挑战中,仍未能实现新 RNA 结构模体中非规范碱基对的建模。我们报告了一种具有独特添加-删除移动集的逐步蒙特卡罗(SWM)方法,该方法能够预测复杂 RNA 结构中非规范碱基对。对 82 个不同模体的基准测试确立了该方法能够从初始状态恢复非规范碱基对的一般能力,包括先前方法难以处理的多链模体。在盲测挑战中,SWM 模型预测了三个体外选择的四环体/受体(C7.2、C7.10 和 R1)的核苷酸分辨率化学作图和补偿突变实验,这些结构以前尚未解决。作为最终测试,SWM 在最近的一次社区范围的 RNA 难题中,成功地、盲目地预测了 Zika 病毒双链假结的所有非规范碱基对。逐步结构形成,如 SWM 方法中所编码的,能够对各种以前难以处理的非规范 RNA 结构问题进行建模。