Suppr超能文献

X 射线荧光显微镜观察葡萄糖刺激下 Mn 的摄取在β细胞亚细胞定位中的作用:对胰腺 MRI 的启示。

β-Cell subcellular localization of glucose-stimulated Mn uptake by X-ray fluorescence microscopy: implications for pancreatic MRI.

机构信息

Department of Radiology, Committee on Medical Physics, University of Chicago, Chicago, IL 60637, USA.

出版信息

Contrast Media Mol Imaging. 2011 Nov-Dec;6(6):474-81. doi: 10.1002/cmmi.447.

Abstract

Manganese (Mn) is a calcium (Ca) analog that has long been used as a magnetic resonance imaging (MRI) contrast agent for investigating cardiac tissue functionality, for brain mapping and for neuronal tract tracing studies. Recently, we have extended its use to investigate pancreatic β-cells and showed that, in the presence of MnCl(2), glucose-activated pancreatic islets yield significant signal enhancement in T(1)-weigheted MR images. In this study, we exploited for the first time the unique capabilities of X-ray fluorescence microscopy (XFM) to both visualize and quantify the metal in pancreatic β-cells at cellular and subcellular levels. MIN-6 insulinoma cells grown in standard tissue culture conditions had only a trace amount of Mn, 1.14 ± 0.03 × 10(-11)µg/µm(2), homogenously distributed across the cell. Exposure to 2 mM glucose and 50 µM MnCl(2) for 20 min resulted in nonglucose-dependent Mn uptake and the overall cell concentration increased to 8.99 ± 2.69 × 10(-11) µg/µm(2). When cells were activated by incubation in 16 mM glucose in the presence of 50 µM MnCl(2), a significant increase in cytoplasmic Mn was measured, reaching 2.57 ± 1.34 × 10(-10) µg/µm(2). A further rise in intracellular concentration was measured following KCl-induced depolarization, with concentrations totaling 1.25 ± 0.33 × 10(-9) and 4.02 ± 0.71 × 10(-10) µg/µm(2) in the cytoplasm and nuclei, respectively. In both activated conditions Mn was prevalent in the cytoplasm and localized primarily in a perinuclear region, possibly corresponding to the Golgi apparatus and involving the secretory pathway. These data are consistent with our previous MRI findings, confirming that Mn can be used as a functional imaging reporter of pancreatic β-cell activation and also provide a basis for understanding how subcellular localization of Mn will impact MRI contrast.

摘要

锰 (Mn) 是一种钙 (Ca) 类似物,长期以来一直被用作磁共振成像 (MRI) 对比剂,用于研究心脏组织功能、脑图谱和神经元束追踪研究。最近,我们将其用途扩展到研究胰腺β细胞,并表明在 MnCl2 的存在下,葡萄糖激活的胰岛在 T1 加权 MRI 图像中产生显著的信号增强。在这项研究中,我们首次利用 X 射线荧光显微镜 (XFM) 的独特功能,在细胞和亚细胞水平上可视化和量化胰腺β细胞中的金属。在标准组织培养条件下生长的 MIN-6 胰岛素瘤细胞只有痕量的 Mn,为 1.14 ± 0.03 × 10(-11)µg/µm(2),均匀分布在整个细胞中。暴露于 2 mM 葡萄糖和 50 µM MnCl2 20 分钟导致非葡萄糖依赖性 Mn 摄取,细胞总浓度增加到 8.99 ± 2.69 × 10(-11) µg/µm(2)。当细胞在 16 mM 葡萄糖存在下用 50 µM MnCl2 孵育激活时,测量到细胞质 Mn 显著增加,达到 2.57 ± 1.34 × 10(-10) µg/µm(2)。在用 KCl 诱导去极化后,测量到细胞内浓度进一步升高,细胞质和细胞核中的浓度分别为 1.25 ± 0.33 × 10(-9)和 4.02 ± 0.71 × 10(-10) µg/µm(2)。在两种激活条件下,Mn 主要位于细胞质的核周区域,可能对应于高尔基体并涉及分泌途径。这些数据与我们之前的 MRI 发现一致,证实 Mn 可作为胰腺β细胞激活的功能成像报告剂,也为理解 Mn 的亚细胞定位如何影响 MRI 对比提供了基础。

相似文献

2
Functional MR microimaging of pancreatic beta-cell activation.
Cell Transplant. 2006;15(2):195-203. doi: 10.3727/000000006783982151.
3
Empirical mathematical model for dynamic manganese-enhanced MRI of the murine pancreas for assessment of β-cell function.
Magn Reson Imaging. 2013 May;31(4):508-14. doi: 10.1016/j.mri.2012.09.003. Epub 2012 Oct 25.
5
Cardiac metal contents after infusions of manganese. An experimental evaluation in the isolated rat heart.
Invest Radiol. 1999 Jul;34(7):470-6. doi: 10.1097/00004424-199907000-00005.
6
In vivo imaging of human breast cancer mouse model with high level expression of calcium sensing receptor at 3T.
Eur Radiol. 2012 Mar;22(3):551-8. doi: 10.1007/s00330-011-2285-1. Epub 2011 Sep 24.

引用本文的文献

1
Applications for Transition-Metal Chemistry in Contrast-Enhanced Magnetic Resonance Imaging.
Inorg Chem. 2020 May 18;59(10):6648-6678. doi: 10.1021/acs.inorgchem.0c00510. Epub 2020 May 5.
2
PET/MRI enables simultaneous quantification of β-cell mass and function.
Theranostics. 2020 Jan 1;10(1):398-410. doi: 10.7150/thno.33410. eCollection 2020.
3
SLC30A10 Mutation Involved in Parkinsonism Results in Manganese Accumulation within Nanovesicles of the Golgi Apparatus.
ACS Chem Neurosci. 2019 Jan 16;10(1):599-609. doi: 10.1021/acschemneuro.8b00451. Epub 2018 Oct 15.
4
Targets and probes for non-invasive imaging of β-cells.
Eur J Nucl Med Mol Imaging. 2017 Apr;44(4):712-727. doi: 10.1007/s00259-016-3592-1. Epub 2016 Dec 26.
5
Identification of dopaminergic neurons of the substantia nigra pars compacta as a target of manganese accumulation.
Metallomics. 2015 May;7(5):748-55. doi: 10.1039/c5mt00023h. Epub 2015 Feb 19.
7
Empirical mathematical model for dynamic manganese-enhanced MRI of the murine pancreas for assessment of β-cell function.
Magn Reson Imaging. 2013 May;31(4):508-14. doi: 10.1016/j.mri.2012.09.003. Epub 2012 Oct 25.

本文引用的文献

1
Functional MRI characterization of isolated human islet activation.
NMR Biomed. 2010 Dec;23(10):1158-65. doi: 10.1002/nbm.1542. Epub 2010 Nov 8.
2
Manganese enhancement in non-CNS organs.
NMR Biomed. 2010 Oct;23(8):931-8. doi: 10.1002/nbm.1513.
3
MR imaging of pancreatic islets: tracking isolation, transplantation and function.
Curr Pharm Des. 2010 May;16(14):1582-94. doi: 10.2174/138161210791164171.
4
Biological applications of X-ray microprobes.
Int J Radiat Biol. 2009 Aug;85(8):710-3. doi: 10.1080/09553000903009514.
5
The case for manganese interaction with mitochondria.
Neurotoxicology. 2009 Jul;30(4):727-9. doi: 10.1016/j.neuro.2009.05.003. Epub 2009 May 22.
6
X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis.
J Mol Biol. 2009 Jun 26;389(5):808-18. doi: 10.1016/j.jmb.2009.04.024. Epub 2009 Apr 18.
9
Noninvasive assessment of pancreatic beta-cell function in vivo with manganese-enhanced magnetic resonance imaging.
Am J Physiol Endocrinol Metab. 2009 Mar;296(3):E573-8. doi: 10.1152/ajpendo.90336.2008. Epub 2008 Dec 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验