基于流形对齐的无监督图像匹配。

Unsupervised image matching based on manifold alignment.

机构信息

Key Laboratory of Machine Perception (MOE), Department of Machine Intelligence, Peking University, Beijing, China.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2012 Aug;34(8):1658-64. doi: 10.1109/TPAMI.2011.229.

Abstract

This paper challenges the issue of automatic matching between two image sets with similar intrinsic structures and different appearances, especially when there is no prior correspondence. An unsupervised manifold alignment framework is proposed to establish correspondence between data sets by a mapping function in the mutual embedding space. We introduce a local similarity metric based on parameterized distance curves to represent the connection of one point with the rest of the manifold. A small set of valid feature pairs can be found without manual interactions by matching the distance curve of one manifold with the curve cluster of the other manifold. To avoid potential confusions in image matching, we propose an extended affine transformation to solve the nonrigid alignment in the embedding space. The comparatively tight alignments and the structure preservation can be obtained simultaneously. The point pairs with the minimum distance after alignment are viewed as the matchings. We apply manifold alignment to image set matching problems. The correspondence between image sets of different poses, illuminations, and identities can be established effectively by our approach.

摘要

本文针对具有相似内在结构但外观不同的两组图像之间的自动匹配问题进行了研究,尤其是在没有先验对应关系的情况下。本文提出了一种无监督流形对齐框架,通过互嵌入空间中的映射函数来建立数据集之间的对应关系。我们引入了一种基于参数化距离曲线的局部相似性度量方法,用于表示曲面上一点与其余部分的连接。通过将一个流形的距离曲线与另一个流形的曲线簇进行匹配,可以在无需人工交互的情况下找到一小部分有效的特征对。为了避免图像匹配中的潜在混淆,我们提出了一种扩展的仿射变换来解决嵌入空间中的非刚性对齐问题。这样可以同时获得较为紧密的对齐和结构保持。对齐后距离最小的点对被视为匹配点。我们将流形对齐应用于图像集匹配问题。通过我们的方法,可以有效地建立不同姿势、光照和身份的图像集之间的对应关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索