Suppr超能文献

体内荧光寿命成像-荧光共振能量转移成像揭示三维环境在癌细胞侵袭过程中对RhoGTP酶活性进行空间调控。

FLIM-FRET imaging in vivo reveals 3D-environment spatially regulates RhoGTPase activity during cancer cell invasion.

作者信息

McGhee Ewan J, Morton Jennifer P, Von Kriegsheim Alex, Schwarz Juliane P, Karim Saadia A, Carragher Neil O, Sansom Owen J, Anderson Kurt I, Timpson Paul

机构信息

The Beatson Institute for Cancer Research; Glasgow; Edinburgh, UK.

出版信息

Small GTPases. 2011 Jul;2(4):239-244. doi: 10.4161/sgtp.2.4.17275. Epub 2011 Jul 1.

Abstract

Many conceptual advances in biology have been achieved by experimental studies using planar two-dimensional cell culture systems. Recent adaptations of molecular techniques to three-dimensional model systems are bridging the gap in our understanding of biological events in vitro and in vivo in the study of disease progression. Recently, in vitro studies using Förster resonance energy transfer (FRET) have shown that the prototypical RhoGTPases Cdc42, Rac and RhoA are temporally and spatially synchronized during cell migration, with initial RhoA activity inducing protrusion prior to activation of Rac. This simultaneous FRET approach illustrates the tight control and dynamic regulation of RhoGTPase activity necessary for coordinated cell migration in vitro. Here, we discuss our recent work using FLIM-FRET analysis in a three-dimensional setting to reveal another layer of regulation in which RhoA activity is governed by the extracellular microenvironment. We demonstrate that RhoA is spatially regulated into discrete fractions of activity at the leading edge and rear of cells during invasion in vivo or within three-dimensional matrices. Significantly, this spatial regulation of RhoA was absent in two-dimensional in vitro settings. This distinct sub-cellular regulation of RhoA at the poles of invading cells in three-dimensions sets a precedent that other RhoGTPases or signaling proteins may also be differentially regulated in a con-text-dependent manner during key biological processes such as invasion.

摘要

生物学领域的许多概念性进展都是通过使用平面二维细胞培养系统的实验研究取得的。最近将分子技术应用于三维模型系统,正在弥合我们在疾病进展研究中对体外和体内生物事件理解上的差距。最近,利用荧光共振能量转移(FRET)的体外研究表明,典型的RhoGTPases蛋白Cdc42、Rac和RhoA在细胞迁移过程中在时间和空间上是同步的,RhoA的初始活性在Rac激活之前诱导细胞突起。这种同步FRET方法说明了体外协调细胞迁移所需的RhoGTPase活性的严格控制和动态调节。在这里,我们讨论我们最近在三维环境中使用荧光寿命成像-荧光共振能量转移(FLIM-FRET)分析的工作,以揭示RhoA活性受细胞外微环境调控的另一层机制。我们证明,在体内侵袭或三维基质中,RhoA在细胞的前沿和后方被空间调控为离散的活性部分。值得注意的是,在二维体外环境中不存在RhoA的这种空间调控。在三维环境中侵袭细胞两极RhoA的这种独特的亚细胞调控开创了一个先例,即在诸如侵袭等关键生物学过程中,其他RhoGTPases蛋白或信号蛋白也可能以依赖于上下文的方式受到差异调控。

相似文献

1
FLIM-FRET imaging in vivo reveals 3D-environment spatially regulates RhoGTPase activity during cancer cell invasion.
Small GTPases. 2011 Jul;2(4):239-244. doi: 10.4161/sgtp.2.4.17275. Epub 2011 Jul 1.
2
Spatial regulation of RhoA activity during pancreatic cancer cell invasion driven by mutant p53.
Cancer Res. 2011 Feb 1;71(3):747-57. doi: 10.1158/0008-5472.CAN-10-2267. Epub 2011 Jan 25.
3
Paxillin and Hic-5 interaction with vinculin is differentially regulated by Rac1 and RhoA.
PLoS One. 2012;7(5):e37990. doi: 10.1371/journal.pone.0037990. Epub 2012 May 22.
5
Intravital FLIM-FRET imaging reveals dasatinib-induced spatial control of src in pancreatic cancer.
Cancer Res. 2013 Aug 1;73(15):4674-86. doi: 10.1158/0008-5472.CAN-12-4545. Epub 2013 Jun 7.
6
Dynamic functions of RhoA in tumor cell migration and invasion.
Small GTPases. 2013 Jul-Sep;4(3):141-7. doi: 10.4161/sgtp.25131. Epub 2013 Jun 10.
8
Cdc42 and RhoA reveal different spatio-temporal dynamics upon local stimulation with Semaphorin-3A.
Front Cell Neurosci. 2015 Aug 26;9:333. doi: 10.3389/fncel.2015.00333. eCollection 2015.
9
A MAPK-Driven Feedback Loop Suppresses Rac Activity to Promote RhoA-Driven Cancer Cell Invasion.
PLoS Comput Biol. 2016 May 3;12(5):e1004909. doi: 10.1371/journal.pcbi.1004909. eCollection 2016 May.
10
Shedding new light on RhoA signalling as a drug target using a novel RhoA-FRET biosensor mouse.
Small GTPases. 2020 Jul;11(4):240-247. doi: 10.1080/21541248.2018.1438024. Epub 2018 Mar 21.

引用本文的文献

2
Luminescence lifetime imaging of three-dimensional biological objects.
J Cell Sci. 2021 May 1;134(9):1-17. doi: 10.1242/jcs.254763. Epub 2021 May 7.
4
Frontiers in Intravital Multiphoton Microscopy of Cancer.
Cancer Rep (Hoboken). 2020 Feb;3(1):e1192. doi: 10.1002/cnr2.1192. Epub 2019 Jun 20.
5
Shedding new light on RhoA signalling as a drug target using a novel RhoA-FRET biosensor mouse.
Small GTPases. 2020 Jul;11(4):240-247. doi: 10.1080/21541248.2018.1438024. Epub 2018 Mar 21.
7
In vivo imaging of the tumor and its associated microenvironment using combined CARS / 2-photon microscopy.
Intravital. 2015 Jun 8;4(1):e1055430. doi: 10.1080/21659087.2015.1055430. eCollection 2015 Jan-Apr.
8
Preclinical Advances with Multiphoton Microscopy in Live Imaging of Skin Cancers.
J Invest Dermatol. 2017 Feb;137(2):282-287. doi: 10.1016/j.jid.2016.08.033. Epub 2016 Nov 12.
9
A simple approach for measuring FRET in fluorescent biosensors using two-photon microscopy.
Nat Protoc. 2016 Nov;11(11):2066-80. doi: 10.1038/nprot.2016.121. Epub 2016 Sep 29.

本文引用的文献

1
Spatial regulation of RhoA activity during pancreatic cancer cell invasion driven by mutant p53.
Cancer Res. 2011 Feb 1;71(3):747-57. doi: 10.1158/0008-5472.CAN-10-2267. Epub 2011 Jan 25.
4
β-Catenin activation synergizes with PTEN loss to cause bladder cancer formation.
Oncogene. 2011 Jan 13;30(2):178-89. doi: 10.1038/onc.2010.399. Epub 2010 Sep 6.
5
In situ analysis of tyrosine phosphorylation networks by FLIM on cell arrays.
Nat Methods. 2010 Jun;7(6):467-72. doi: 10.1038/nmeth.1458. Epub 2010 May 9.
6
Dasatinib inhibits the development of metastases in a mouse model of pancreatic ductal adenocarcinoma.
Gastroenterology. 2010 Jul;139(1):292-303. doi: 10.1053/j.gastro.2010.03.034. Epub 2010 Mar 17.
7
Mutant p53 drives invasion by promoting integrin recycling.
Cell. 2009 Dec 24;139(7):1327-41. doi: 10.1016/j.cell.2009.11.026.
8
Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer.
Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):246-51. doi: 10.1073/pnas.0908428107. Epub 2009 Dec 14.
9
A role for Rho GTPases and cell-cell adhesion in single-cell motility in vivo.
Nat Cell Biol. 2010 Jan;12(1):47-53; sup pp 1-11. doi: 10.1038/ncb2003. Epub 2009 Dec 13.
10
The potential of optical proteomic technologies to individualize prognosis and guide rational treatment for cancer patients.
Target Oncol. 2009 Sep;4(3):235-52. doi: 10.1007/s11523-009-0116-y. Epub 2009 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验