Suppr超能文献

使用相干反斯托克斯拉曼散射(CARS)/双光子显微镜联合技术对肿瘤及其相关微环境进行体内成像。

In vivo imaging of the tumor and its associated microenvironment using combined CARS / 2-photon microscopy.

作者信息

Lee Martin, Downes Andy, Chau You-Ying, Serrels Bryan, Hastie Nick, Elfick Alistair, Brunton Valerie, Frame Margaret, Serrels Alan

机构信息

Edinburgh Cancer Research Center; Institute of Genetics and Molecular Medicine; University of Edinburgh ; Edinburgh, United Kingdom.

School of Engineering; University of Edinburgh ; Edinburgh, United Kingdom.

出版信息

Intravital. 2015 Jun 8;4(1):e1055430. doi: 10.1080/21659087.2015.1055430. eCollection 2015 Jan-Apr.

Abstract

The use of confocal and multi-photon microscopy for intra-vital cancer imaging has impacted on our understanding of cancer cell behavior and interaction with the surrounding tumor microenvironment o. However, many studies to-date rely on the use fluorescent dyes or genetically encoded probes that enable visualization of a structure or cell population of interest, but do not illuminate the complexity of the surrounding tumor microenvironment. Here, we show that multi-modal microscopy combining 2-photon fluorescence with CARS can begin to address this deficit, enabling detailed imaging of the tumor niche without the need for additional labeling. This can be performed on live tumor-bearing animals through optical observation windows, permitting real-time and longitudinal imaging of dynamic processes within the tumor niche.

摘要

共聚焦显微镜和多光子显微镜在活体癌症成像中的应用,影响了我们对癌细胞行为以及癌细胞与周围肿瘤微环境相互作用的理解。然而,迄今为止,许多研究依赖于使用荧光染料或基因编码探针来实现对感兴趣的结构或细胞群体的可视化,但并未阐明周围肿瘤微环境的复杂性。在此,我们表明,将双光子荧光与相干反斯托克斯拉曼散射(CARS)相结合的多模态显微镜能够开始弥补这一不足,无需额外标记即可对肿瘤微环境进行详细成像。这可以通过光学观察窗口在荷瘤活体动物上进行,从而实现对肿瘤微环境内动态过程的实时和纵向成像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d72a/5226011/1446e8f45a80/kinv-04-01-1055430-g001.jpg

相似文献

1
In vivo imaging of the tumor and its associated microenvironment using combined CARS / 2-photon microscopy.
Intravital. 2015 Jun 8;4(1):e1055430. doi: 10.1080/21659087.2015.1055430. eCollection 2015 Jan-Apr.
4
Visualizing intra-medulla lipids in human hair using ultra-multiplex CARS, SHG, and THG microscopy.
Analyst. 2021 Feb 21;146(4):1163-1168. doi: 10.1039/d0an01880e. Epub 2021 Jan 5.
6
Live cell imaging with chemical specificity using dual frequency CARS microscopy.
Methods Enzymol. 2012;504:273-91. doi: 10.1016/B978-0-12-391857-4.00014-8.
7
Nonlinear Optical Microscopy: From Fundamentals to Applications in Live Bioimaging.
Front Bioeng Biotechnol. 2020 Oct 9;8:585363. doi: 10.3389/fbioe.2020.585363. eCollection 2020.
9
Achieving molecular selectivity in imaging using multiphoton Raman spectroscopy techniques.
Traffic. 2001 Nov;2(11):781-8. doi: 10.1034/j.1600-0854.2001.21106.x.

引用本文的文献

2
Synthesis and Application of Two-Photon Active Fluorescent Rhodol Dyes for Antibody Conjugation and Cell Imaging.
ACS Omega. 2023 Jun 14;8(25):22836-22843. doi: 10.1021/acsomega.3c01796. eCollection 2023 Jun 27.
3
Diagnostics Using Non-Invasive Technologies in Dermatological Oncology.
Cancers (Basel). 2022 Nov 29;14(23):5886. doi: 10.3390/cancers14235886.
4
Frontiers in Intravital Multiphoton Microscopy of Cancer.
Cancer Rep (Hoboken). 2020 Feb;3(1):e1192. doi: 10.1002/cnr2.1192. Epub 2019 Jun 20.
5
Imaging Platelet Processes and Function-Current and Emerging Approaches for Imaging and .
Front Immunol. 2020 Jan 31;11:78. doi: 10.3389/fimmu.2020.00078. eCollection 2020.
6
Utilizing Stimulated Raman Scattering Microscopy To Study Intracellular Distribution of Label-Free Ponatinib in Live Cells.
J Med Chem. 2020 Mar 12;63(5):2028-2034. doi: 10.1021/acs.jmedchem.9b01546. Epub 2019 Dec 27.
8
Emerging approaches to study cell-cell interactions in tumor microenvironment.
Oncotarget. 2019 Jan 22;10(7):785-797. doi: 10.18632/oncotarget.26585.
9
Types of advanced optical microscopy techniques for breast cancer research: a review.
Lasers Med Sci. 2018 Dec;33(9):1849-1858. doi: 10.1007/s10103-018-2659-6. Epub 2018 Oct 11.
10
Imaging drug uptake by bioorthogonal stimulated Raman scattering microscopy.
Chem Sci. 2017 Aug 1;8(8):5606-5615. doi: 10.1039/c7sc01837a. Epub 2017 May 24.

本文引用的文献

2
Assessment of breast pathologies using nonlinear microscopy.
Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15304-9. doi: 10.1073/pnas.1416955111. Epub 2014 Oct 13.
3
Mitigating phototoxicity during multiphoton microscopy of live Drosophila embryos in the 1.0-1.2 µm wavelength range.
PLoS One. 2014 Aug 11;9(8):e104250. doi: 10.1371/journal.pone.0104250. eCollection 2014.
4
The Rac-FRET mouse reveals tight spatiotemporal control of Rac activity in primary cells and tissues.
Cell Rep. 2014 Mar 27;6(6):1153-1164. doi: 10.1016/j.celrep.2014.02.024. Epub 2014 Mar 13.
6
Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy.
Sci Transl Med. 2013 Sep 4;5(201):201ra119. doi: 10.1126/scitranslmed.3005954.
7
Preclinical intravital microscopy of the tumour-stroma interface: invasion, metastasis, and therapy response.
Curr Opin Cell Biol. 2013 Oct;25(5):659-71. doi: 10.1016/j.ceb.2013.07.001. Epub 2013 Jul 26.
8
Intravital FLIM-FRET imaging reveals dasatinib-induced spatial control of src in pancreatic cancer.
Cancer Res. 2013 Aug 1;73(15):4674-86. doi: 10.1158/0008-5472.CAN-12-4545. Epub 2013 Jun 7.
9
Multicolored stain-free histopathology with coherent Raman imaging.
Lab Invest. 2012 Oct;92(10):1492-502. doi: 10.1038/labinvest.2012.109. Epub 2012 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验