Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium.
Department of Biomedical Engineering, Center for Modeling, Simulation and Imaging for Medicine (CeMSIM), Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA.
J Cell Sci. 2021 May 1;134(9):1-17. doi: 10.1242/jcs.254763. Epub 2021 May 7.
A major focus of current biological studies is to fill the knowledge gaps between cell, tissue and organism scales. To this end, a wide array of contemporary optical analytical tools enable multiparameter quantitative imaging of live and fixed cells, three-dimensional (3D) systems, tissues, organs and organisms in the context of their complex spatiotemporal biological and molecular features. In particular, the modalities of luminescence lifetime imaging, comprising fluorescence lifetime imaging (FLI) and phosphorescence lifetime imaging microscopy (PLIM), in synergy with Förster resonance energy transfer (FRET) assays, provide a wealth of information. On the application side, the luminescence lifetime of endogenous molecules inside cells and tissues, overexpressed fluorescent protein fusion biosensor constructs or probes delivered externally provide molecular insights at multiple scales into protein-protein interaction networks, cellular metabolism, dynamics of molecular oxygen and hypoxia, physiologically important ions, and other physical and physiological parameters. Luminescence lifetime imaging offers a unique window into the physiological and structural environment of cells and tissues, enabling a new level of functional and molecular analysis in addition to providing 3D spatially resolved and longitudinal measurements that can range from microscopic to macroscopic scale. We provide an overview of luminescence lifetime imaging and summarize key biological applications from cells and tissues to organisms.
当前生物学研究的一个主要重点是填补细胞、组织和器官尺度之间的知识空白。为此,广泛的当代光学分析工具能够在复杂的时空生物学和分子特征背景下对活细胞和固定细胞、三维(3D)系统、组织、器官和生物体进行多参数定量成像。特别是,包括荧光寿命成像(FLI)和磷光寿命成像显微镜(PLIM)在内的发光寿命成像模式,与Förster 共振能量转移(FRET)测定协同作用,提供了丰富的信息。在应用方面,细胞内和组织内内源性分子的发光寿命、过表达的荧光蛋白融合生物传感器构建体或外部传递的探针提供了在多个尺度上对蛋白质-蛋白质相互作用网络、细胞代谢、分子氧和缺氧动力学、生理重要离子以及其他物理和生理参数的分子见解。发光寿命成像为细胞和组织的生理和结构环境提供了一个独特的窗口,除了提供从微观到宏观尺度的三维空间分辨和纵向测量外,还能够实现新的功能和分子分析水平。我们提供了发光寿命成像的概述,并总结了从细胞和组织到生物体的关键生物学应用。