Suppr超能文献

极端条件下 C2 凝聚的时变量子动力学模拟。

Time-dependent quantum dynamical simulations of C2 condensation under extreme conditions.

机构信息

National Institute for Computational Sciences, Oak Ridge, Tennessee 37831, USA.

出版信息

Phys Chem Chem Phys. 2012 May 14;14(18):6273-9. doi: 10.1039/c1cp22035g. Epub 2011 Dec 7.

Abstract

We report theoretical studies of the initial phase of bulk C(2) condensation into carbon nano-structures by means of Born-Oppenheimer and time-dependent quantum mechanical Liouville-von Neumann molecular dynamics based on the density-functional tight-binding (DFTB) framework for electrons. We observe that the time-dependent quantum mechanical approach leads to faster formation of carbon nanostructures than analogous Born-Oppenheimer simulations. Our results suggest that the condensation of bulk carbon is nonadiabatic in nature, with the critical role of electronic stopping as in ion-irradiation of materials. Contrary to time-dependent quantum mechanical simulations, Born-Oppenheimer dynamics incorrectly predict that the short carbon chains obtained from initial reactive collisions between C(2) quickly evaporate, leading to much lower probability of secondary collisions and condensation. We also discuss some deficiencies in Born-Oppenheimer dynamics that lead to unphysical charge polarization and electron transfer.

摘要

我们通过基于电子密度泛函紧束缚(DFTB)框架的 Born-Oppenheimer 和含时量子力学 Liouville-von Neumann 分子动力学方法研究了大块 C(2)凝聚成碳纳米结构的初始阶段的理论。我们观察到,含时量子力学方法比类似的 Born-Oppenheimer 模拟更快地形成碳纳米结构。我们的结果表明,大块碳的凝聚本质上是非绝热的,电子停止起着至关重要的作用,就像材料中的离子辐照一样。与含时量子力学模拟相反,Born-Oppenheimer 动力学错误地预测,初始 C(2)之间的反应碰撞产生的短碳链会迅速蒸发,导致二次碰撞和凝聚的可能性大大降低。我们还讨论了 Born-Oppenheimer 动力学的一些缺陷,这些缺陷导致了非物理的电荷极化和电子转移。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验