Suppr超能文献

一类多输入多输出非线性离散时间系统的数据驱动无模型自适应控制

Data-driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems.

作者信息

Hou Zhongsheng, Jin Shangtai

机构信息

Advanced Control Systems Laboratory of the School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China.

出版信息

IEEE Trans Neural Netw. 2011 Dec;22(12):2173-88. doi: 10.1109/TNN.2011.2176141. Epub 2011 Nov 30.

Abstract

In this paper, a data-driven model-free adaptive control (MFAC) approach is proposed based on a new dynamic linearization technique (DLT) with a novel concept called pseudo-partial derivative for a class of general multiple-input and multiple-output nonlinear discrete-time systems. The DLT includes compact form dynamic linearization, partial form dynamic linearization, and full form dynamic linearization. The main feature of the approach is that the controller design depends only on the measured input/output data of the controlled plant. Analysis and extensive simulations have shown that MFAC guarantees the bounded-input bounded-output stability and the tracking error convergence.

摘要

本文针对一类一般的多输入多输出非线性离散时间系统,基于一种新的动态线性化技术(DLT)提出了一种数据驱动的无模型自适应控制(MFAC)方法,该技术具有一个名为伪偏导数的新概念。DLT包括紧凑形式动态线性化、部分形式动态线性化和全形式动态线性化。该方法的主要特点是控制器设计仅依赖于被控对象的测量输入/输出数据。分析和大量仿真表明,MFAC保证了有界输入有界输出稳定性和跟踪误差收敛。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验