Suppr超能文献

大种群和有限种群“参与竞争”模型中的纳什均衡与进化稳定性

Nash equilibrium and evolutionary stability in large- and finite-population "playing the field" models.

作者信息

Crawford V P

机构信息

Department of Economics, University of California, San Diego, La Jolla 92093.

出版信息

J Theor Biol. 1990 Jul 9;145(1):83-94. doi: 10.1016/s0022-5193(05)80536-3.

Abstract

This paper studies the correspondence between Nash equilibrium and evolutionary stability in large- and finite-population "playing the field" models. Whenever the fitness function is sufficiently continuous, any large-population ESS corresponds to a symmetric Nash equilibrium in the game that describes the simultaneous interaction of the individuals in the population, and any strict, symmetric Nash equilibrium in that game corresponds to a large-population ESS. This correspondence continues to hold, approximately, in finite populations; and it holds exactly for strict pure-strategy equilibria in sufficiently large finite populations. By contrast, a sequence of (mixed-strategy) finite-population ESSs can converge, as the population grows, to a limit that is not a large-population ESS, and a large-population ESS need not be the limit of any sequence of finite-population ESSs.

摘要

本文研究了大群体和有限群体“参与博弈”模型中纳什均衡与进化稳定性之间的对应关系。只要适应度函数足够连续,任何大群体进化稳定策略(ESS)都对应于描述群体中个体同时相互作用的博弈中的对称纳什均衡,并且该博弈中的任何严格对称纳什均衡都对应于一个大群体进化稳定策略。这种对应关系在有限群体中也大致成立;对于足够大的有限群体中的严格纯策略均衡,这种对应关系是精确成立的。相比之下,随着群体规模的增长,一系列(混合策略)有限群体进化稳定策略可能收敛到一个不是大群体进化稳定策略的极限,并且大群体进化稳定策略不一定是任何有限群体进化稳定策略序列的极限。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验