Suppr超能文献

磁铁矿化学计量对 U(VI)还原的影响。

Influence of magnetite stoichiometry on U(VI) reduction.

机构信息

Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States.

出版信息

Environ Sci Technol. 2012 Jan 17;46(2):778-86. doi: 10.1021/es2024912. Epub 2011 Dec 22.

Abstract

Hexavalent uranium (U(VI)) can be reduced enzymatically by various microbes and abiotically by Fe(2+)-bearing minerals, including magnetite, of interest because of its formation from Fe(3+) (oxy)hydroxides via dissimilatory iron reduction. Magnetite is also a corrosion product of iron metal in suboxic and anoxic conditions and is likely to form during corrosion of steel waste containers holding uranium-containing spent nuclear fuel. Previous work indicated discrepancies in the extent of U(VI) reduction by magnetite. Here, we demonstrate that the stoichiometry (the bulk Fe(2+)/Fe(3+) ratio, x) of magnetite can, in part, explain the observed discrepancies. In our studies, magnetite stoichiometry significantly influenced the extent of U(VI) reduction by magnetite. Stoichiometric and partially oxidized magnetites with x ≥ 0.38 reduced U(VI) to U(IV) in UO(2) (uraninite) nanoparticles, whereas with more oxidized magnetites (x < 0.38) and maghemite (x = 0), sorbed U(VI) was the dominant phase observed. Furthermore, as with our chemically synthesized magnetites (x ≥ 0.38), nanoparticulate UO(2) was formed from reduction of U(VI) in a heat-killed suspension of biogenic magnetite (x = 0.43). X-ray absorption and Mössbauer spectroscopy results indicate that reduction of U(VI) to U(IV) is coupled to oxidation of Fe(2+) in magnetite. The addition of aqueous Fe(2+) to suspensions of oxidized magnetite resulted in reduction of U(VI) to UO(2), consistent with our previous finding that Fe(2+) taken up from solution increased the magnetite stoichiometry. Our results suggest that magnetite stoichiometry and the ability of aqueous Fe(2+) to recharge magnetite are important factors in reduction of U(VI) in the subsurface.

摘要

六价铀(U(VI))可以被各种微生物酶促还原,也可以被磁铁矿等含亚铁矿物非酶促还原,这很有趣,因为它是由 Fe(3+)(氧)氢氧化物通过异化铁还原形成的。磁铁矿也是亚缺氧和缺氧条件下铁金属的腐蚀产物,并且可能在含有铀的乏核燃料的钢废料容器的腐蚀过程中形成。以前的工作表明磁铁矿还原 U(VI)的程度存在差异。在这里,我们证明磁铁矿的化学计量(总体 Fe(2+)/Fe(3+) 比,x)部分可以解释观察到的差异。在我们的研究中,磁铁矿的化学计量极大地影响了磁铁矿还原 U(VI)的程度。化学计量和部分氧化的磁铁矿(x≥0.38)将 U(VI)还原为 UO2(铀矿)纳米颗粒中的 U(IV),而对于更氧化的磁铁矿(x<0.38)和磁赤铁矿(x=0),吸附的 U(VI)是观察到的主要相。此外,与我们合成的磁铁矿(x≥0.38)一样,纳米级 UO2 是由生物磁铁矿(x=0.43)热灭活悬浮液中 U(VI)的还原形成的。X 射线吸收和穆斯堡尔光谱结果表明,U(VI)还原与磁铁矿中 Fe(2+)的氧化耦合。将水合 Fe(2+)添加到氧化磁铁矿悬浮液中会导致 U(VI)还原为 UO2,这与我们之前的发现一致,即从溶液中吸收的 Fe(2+)增加了磁铁矿的化学计量。我们的结果表明,磁铁矿的化学计量和水合 Fe(2+)补充磁铁矿的能力是地下环境中 U(VI)还原的重要因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验