Suppr超能文献

利用热力学关系解开氧化铁的尺寸依赖性氧化还原反应性。

Disentangling the size-dependent redox reactivity of iron oxides using thermodynamic relationships.

机构信息

Department of Civil & Environmental Engineering, Pennsylvania State University, University Park, PA 16801.

Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602.

出版信息

Proc Natl Acad Sci U S A. 2022 Oct 4;119(40):e2204673119. doi: 10.1073/pnas.2204673119. Epub 2022 Sep 26.

Abstract

Nanoparticles often exhibit size-dependent redox reactivities, with smaller particles being more reactive in some cases, while less reactive in others. Predicting trends between redox reaction rates and particle sizes is often complicated because a particle's dimensions can simultaneously influence its aggregation state, reactive surface area, and thermodynamic properties. Here, we tested the hypothesis that interfacial redox reaction rates for nanoparticles with different sizes can be described with a single linear free-energy relationship (LFER) if size-dependent reactive surface areas and thermodynamic properties are properly considered. We tested this hypothesis using a well-known interfacial redox reaction: the reduction of nitrobenzene to aniline by iron-oxide-bound Fe. We measured the reduction potential () values of nano-particulate hematite suspensions containing aqueous Fe using mediated potentiometry and characterized the size and aggregation states of hematite samples at circumneutral pH values. We used the measured values to calculate surface energies and reactive surface areas using thermodynamic relationships. Nitrobenzene reduction rates were lower for smaller particles, despite their larger surface areas, due to their higher surface energies. When differences in surface areas and thermodynamic properties were considered, nitrobenzene reduction kinetics for all particle sizes was described with a LFER. Our results demonstrate that when Fe serves as a reductant, an antagonistic effect exists, with smaller particles having larger reactive surface areas but also more positive reduction potentials. When Fe serves as an oxidant, however, these two effects work in concert, which likely explains past discrepancies regarding how iron oxide particle sizes influence redox reaction rates.

摘要

纳米粒子通常表现出尺寸依赖性的氧化还原反应活性,在某些情况下,较小的粒子更具反应性,而在其他情况下则反应性较低。预测氧化还原反应速率与粒子尺寸之间的趋势通常很复杂,因为粒子的尺寸可以同时影响其聚集状态、反应表面积和热力学性质。在这里,我们测试了一个假设,即如果适当考虑尺寸依赖性的反应表面积和热力学性质,不同尺寸的纳米粒子的界面氧化还原反应速率可以用单一的线性自由能关系(LFER)来描述。我们使用一种众所周知的界面氧化还原反应来测试这一假设:氧化铁结合的 Fe 将硝基苯还原为苯胺。我们使用介电泳测量法测量了含有水性 Fe 的纳米颗粒赤铁矿悬浮液的还原电位(E)值,并在中性 pH 值下表征了赤铁矿样品的尺寸和聚集状态。我们使用测量的 E 值通过热力学关系计算表面能和反应表面积。尽管较小的粒子具有更大的表面积,但由于其更高的表面能,它们的硝基苯还原速率较低。当考虑表面积和热力学性质的差异时,所有粒子尺寸的硝基苯还原动力学都可以用 LFER 来描述。我们的结果表明,当 Fe 作为还原剂时,存在拮抗效应,较小的粒子具有更大的反应表面积,但还原电位也更正。然而,当 Fe 作为氧化剂时,这两个效应协同作用,这可能解释了过去关于氧化铁颗粒尺寸如何影响氧化还原反应速率的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67c1/9546556/16f885a10f0c/pnas.2204673119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验