Department of Chemistry, University of Delhi, Delhi 110 007, India.
Inorg Chem. 2012 Jan 2;51(1):157-69. doi: 10.1021/ic201343w. Epub 2011 Dec 8.
(η(6)-C(10)H(14))RuCl(μ-Cl) (η(6)-C(10)H(14) = η(6)-p-cymene) was subjected to a bridge-splitting reaction with N,N',N''-triarylguanidines, (ArNH)(2)C═NAr, in toluene at ambient temperature to afford [(η(6)-C(10)H(14))RuCl{κ(2)(N,N')((ArN)(2)C-N(H)Ar)}] (Ar = C(6)H(4)Me-4 (1), C(6)H(4)(OMe)-2 (2), C(6)H(4)Me-2 (3), and C(6)H(3)Me(2)-2,4 (4)) in high yield with a view aimed at understanding the influence of substituent(s) on the aryl rings of the guanidine upon the solid-state structure, solution behavior, and reactivity pattern of the products. Complexes 1-3 upon reaction with NaN(3) in ethanol at ambient temperature afforded [(η(6)-C(10)H(14))RuN(3){κ(2)(N,N')((ArN)(2)C-N(H)Ar)}] (Ar = C(6)H(4)Me-4 (5), C(6)H(4)(OMe)-2 (6), and C(6)H(4)Me-2 (7)) in high yield. [3 + 2] cycloaddition reaction of 5-7 with RO(O)C-C≡C-C(O)OR (R = Et (DEAD) and Me (DMAD)) (diethylacetylenedicarboxylate, DEAD; dimethylacetylenedicarboxylate, DMAD) in CH(2)Cl(2) at ambient temperature afforded [(η(6)-C(10)H(14))Ru{N(3)C(2)(C(O)OR)(2)}{κ(2)(N,N')((ArN)(2)C-N(H)Ar)}]·xH(2)O (x = 1, R = Et, Ar = C(6)H(4)Me-4 (8·H(2)O); x = 0, R = Me, Ar = C(6)H(4)(OMe)-2 (9), and C(6)H(4)Me-2 (10)) in moderate yield. The molecular structures of 1-6, 8·H(2)O, and 10 were determined by single crystal X-ray diffraction data. The ruthenium atom in the aforementioned complexes revealed pseudo octahedral "three legged piano stool" geometry. The guanidinate ligand in 2, 3, and 6 revealed syn-syn conformation and that in 4, and 10 revealed syn-anti conformation, and the conformational difference was rationalized on the basis of subtle differences in the stereochemistry of the coordinated nitrogen atoms caused by the aryl moiety in 3 and 4 or steric overload caused by the substituents around the ruthenium atom in 10. The bonding pattern of the CN(3) unit of the guanidinate ligand in the new complexes was explained by invoking n-π conjugation involving the interaction of the NHAr/N(coord)Ar lone pair with C═Nπ* orbital of the imine unit. Complexes 1, 2, 5, 6, 8·H(2)O, and 9 were shown to exist as a single isomer in solution as revealed by NMR data, and this was ascribed to a fast C-N(H)Ar bond rotation caused by a less bulky aryl moiety in these complexes. In contrast, 3 and 10 were shown to exist as a mixture of three and five isomers in about 1:1:1 and 1·0:1·2:2·7:3·5:6·9 ratios, respectively in solution as revealed by a VT (1)H NMR, (1)H-(1)H COSY in conjunction with DEPT-90 (13)C NMR data measured at 233 K in the case of 3. The multiple number of isomers in solution was ascribed to the restricted C-N(H)(o-tolyl) bond rotation caused by the bulky o-tolyl substituent in 3 or the aforementioned restricted C-NH(o-tolyl) bond rotation as well as the restricted ruthenium-arene(centroid) bond rotation caused by the substituents around the ruthenium atom in 10.
(η(6)-C(10)H(14))RuCl(μ-Cl)(η(6)-C(10)H(14) = η(6)-p-cymene)在环境温度下与 N,N',N''-三芳基胍((ArNH)(2)C═NAr)进行桥分裂反应,在甲苯中生成[(η(6)-C(10)H(14))RuCl{κ(2)(N,N')((ArN)(2)C-N(H)Ar)}](Ar = C(6)H(4)Me-4 (1)、C(6)H(4)(OMe)-2 (2)、C(6)H(4)Me-2 (3) 和 C(6)H(3)Me(2)-2,4 (4)),收率高,目的是了解胍的芳环上取代基对产物的固态结构、溶液行为和反应性模式的影响。复合物 1-3 在环境温度下与乙醇中的NaN(3)反应,生成[(η(6)-C(10)H(14))RuN(3){κ(2)(N,N')((ArN)(2)C-N(H)Ar)}](Ar = C(6)H(4)Me-4 (5)、C(6)H(4)(OMe)-2 (6)和 C(6)H(4)Me-2 (7)),收率高。5-7 与 RO(O)C-C≡C-C(O)OR(R = Et(DEAD)和 Me(DMAD))(二乙基丙二酰二羧酸酯,DEAD;二甲基丙二酰二羧酸酯,DMAD)在 CH(2)Cl(2)中的[3 + 2]环加成反应在环境温度下生成[(η(6)-C(10)H(14))Ru{N(3)C(2)(C(O)OR)(2)}{κ(2)(N,N')((ArN)(2)C-N(H)Ar)}]·xH(2)O(x = 1,R = Et,Ar = C(6)H(4)Me-4 (8·H(2)O);x = 0,R = Me,Ar = C(6)H(4)(OMe)-2 (9)和 C(6)H(4)Me-2 (10)),产率中等。复合物 1-6、8·H(2)O 和 10 的分子结构通过单晶 X 射线衍射数据确定。上述复合物中的钌原子呈现出伪八面体“三足钢琴凳”几何形状。在 2、3 和 6 中,胍配体呈现顺式-顺式构象,在 4 和 10 中呈现顺式-反式构象,构象差异可归因于 3 和 4 中配位氮原子的立体化学的细微差异,或者 10 中钌原子周围取代基引起的空间位阻。新复合物中胍配体的 CN(3)单元的键合模式通过涉及 NHAr/N(配位)Ar 孤对与亚胺单元的 C═Nπ*轨道的 n-π 共轭来解释。复合物 1、2、5、6、8·H(2)O 和 9 在溶液中被证明是单一异构体,如 NMR 数据所示,这归因于这些复合物中较小的芳基部分引起的较快的 C-N(H)Ar 键旋转。相比之下,3 和 10 在溶液中被证明是混合物的三种和五种异构体,在 233 K 下通过 VT(1)H NMR、(1)H-(1)H COSY 与 DEPT-90(13)C NMR 数据的结合测量,在 3 的情况下分别以约 1:1:1、1·0:1·2:2·7:3·5:6·9 的比例存在。溶液中多种异构体的存在归因于 3 中较大的邻甲苯基取代基引起的受限的 C-N(H)(o-甲苯基)键旋转,或者上述受限的 C-NH(o-甲苯基)键旋转以及 10 中钌原子周围取代基引起的受限的 Ru-芳基(质心)键旋转。