Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
Inorg Chem. 2012 Jan 2;51(1):215-24. doi: 10.1021/ic202162q. Epub 2011 Dec 9.
Investigations of blue phosphorescent organic light emitting diodes (OLEDs) based on [Ir(2-(2,4-difluorophenyl)pyridine)(2)(picolinate)] (FIrPic) have pointed to the cleavage of the picolinate as a possible reason for device instability. We reproduced the loss of picolinate and acetylacetonate ancillary ligands in solution by the addition of Brønsted or Lewis acids. When hydrochloric acid is added to a solution of a [Ir(C^N)(2)(X^O)] complex (C^N = 2-phenylpyridine (ppy) or 2-(2,4-difluorophenyl)pyridine (diFppy) and X^O = picolinate (pic) or acetylacetonate (acac)), the cleavage of the ancillary ligand results in the direct formation of the chloro-bridged iridium(III) dimer [{Ir(C^N)(2)(μ-Cl)}(2)]. When triflic acid or boron trifluoride are used, a source of chloride (here tetrabutylammonium chloride) is added to obtain the same chloro-bridged iridium(III) dimer. Then, we advantageously used this degradation reaction for the efficient synthesis of tris-heteroleptic cyclometalated iridium(III) complexes [Ir(C^N(1))(C^N(2))(L)], a family of cyclometalated complexes otherwise challenging to prepare. We used an iridium(I) complex, [{Ir(COD)(μ-Cl)}(2)], and a stoichiometric amount of two different C^N ligands (C^N(1) = ppy; C^N(2) = diFppy) as starting materials for the swift preparation of the chloro-bridged iridium(III) dimers. After reacting the mixture with acetylacetonate and subsequent purification, the tris-heteroleptic complex [Ir(ppy)(diFppy)(acac)] could be isolated with good yield from the crude containing as well the bis-heteroleptic complexes [Ir(ppy)(2)(acac)] and [Ir(diFppy)(2)(acac)]. Reaction of the tris-heteroleptic acac complex with hydrochloric acid gives pure heteroleptic chloro-bridged iridium dimer [{Ir(ppy)(diFppy)(μ-Cl)}(2)], which can be used as starting material for the preparation of a new tris-heteroleptic iridium(III) complex based on these two C^N ligands. Finally, we use DFT/LR-TDDFT to rationalize the impact of the two different C^N ligands on the observed photophysical and electrochemical properties.
基于[Ir(2-(2,4-二氟苯基)吡啶)(2)(吡啶甲酸盐)](FIrPic)的蓝色磷光有机发光二极管(OLED)的研究指出,吡啶甲酸盐的断裂可能是器件不稳定的一个原因。我们通过添加布朗斯特或路易斯酸在溶液中再现了吡啶甲酸盐和乙酰丙酮辅助配体的损失。当盐酸加入到[Ir(C^N)(2)(X^O)]配合物(C^N = 2-苯基吡啶(ppy)或 2-(2,4-二氟苯基)吡啶(diFppy)和 X^O = 吡啶甲酸盐(pic)或乙酰丙酮酸盐(acac))的溶液中时,辅助配体的断裂导致直接形成氯桥联铱(III)二聚体[{Ir(C^N)(2)(μ-Cl)}(2)]。当使用三氟甲磺酸或三氟化硼时,添加氯源(此处为四丁基氯化铵)以获得相同的氯桥联铱(III)二聚体。然后,我们利用这种降解反应高效合成了三齿杂环金属化铱(III)配合物[Ir(C^N(1))(C^N(2))(L)],这是一类难以制备的杂环金属化配合物。我们使用铱(I)配合物[{Ir(COD)(μ-Cl)}(2)]和两种不同的 C^N 配体(C^N(1) = ppy;C^N(2) = diFppy)的化学计量量作为起始材料,快速制备氯桥联铱(III)二聚体。在将混合物与乙酰丙酮酸盐反应并进行后处理后,可以从粗产物中以良好的产率分离出三齿杂环金属化配合物[Ir(ppy)(diFppy)(acac)],粗产物中还包含双齿杂环金属化配合物[Ir(ppy)(2)(acac)]和[Ir(diFppy)(2)(acac)]。用盐酸处理三齿杂环 acac 配合物可得到纯的杂环氯桥联铱二聚体[{Ir(ppy)(diFppy)(μ-Cl)}(2)],它可作为基于这两种 C^N 配体的新型三齿杂环金属化铱(III)配合物的起始材料。最后,我们使用 DFT/LR-TDDFT 来合理说明两种不同 C^N 配体对观察到的光物理和电化学性质的影响。