Suppr超能文献

采用聚噻吩有序半导体碳纳米管网络的晶圆级薄膜晶体管的制造和特性研究。

Wafer-scale fabrication and characterization of thin-film transistors with polythiophene-sorted semiconducting carbon nanotube networks.

机构信息

Center for Integrated Systems, Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.

出版信息

ACS Nano. 2012 Jan 24;6(1):451-8. doi: 10.1021/nn203771u. Epub 2011 Dec 21.

Abstract

Semiconducting single-walled carbon nanotubes (SWCNTs) have great potential of becoming the channel material for future thin-film transistor technology. However, an effective sorting technique is needed to obtain high-quality semiconducting SWCNTs for optimal device performance. In our previous work, we reported a dispersion technique for semiconducting SWCNTs that relies on regioregular poly(3-dodecylthiophene) (rr-P3DDT) to form hybrid nanostructures. In this study, we demonstrate the scalability of those sorted CNT composite structures to form arrays of TFTs using standard lithographic techniques. The robustness of these CNT nanostructures was tested with Raman spectroscopy and atomic force microscope images. Important trends in device properties were extracted by means of electrical measurements for different CNT concentrations and channel lengths (L(c)). A statistical study provided an average mobility of 1 cm(2)/V·s and I(on)/I(off) as high as 10(6) for short channel lengths (L(c) = 1.5 μm) with 100% yield. This highlights the effectiveness of this sorting technique and its scalability for large-scale, flexible, and transparent display applications.

摘要

半导体单壁碳纳米管 (SWCNTs) 具有成为未来薄膜晶体管技术的沟道材料的巨大潜力。然而,需要一种有效的分类技术来获得高质量的半导体 SWCNTs,以实现最佳的器件性能。在我们之前的工作中,我们报道了一种基于规则聚(3-十二烷基噻吩)(rr-P3DDT)形成杂化纳米结构的半导体 SWCNTs 分散技术。在这项研究中,我们展示了使用标准光刻技术将这些分类 CNT 复合结构扩展为 TFT 阵列的可扩展性。使用拉曼光谱和原子力显微镜图像测试了这些 CNT 纳米结构的稳健性。通过不同 CNT 浓度和沟道长度(L(c))的电测量提取了器件性能的重要趋势。对于短沟道长度(L(c) = 1.5 μm),具有 100%产率的统计研究提供了平均迁移率为 1 cm(2)/V·s 和 I(on)/I(off)高达 10(6)的结果。这突出了这种分类技术的有效性及其在大规模、灵活和透明显示应用中的可扩展性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验