Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
J Phys Chem B. 2012 Jan 19;116(2):860-71. doi: 10.1021/jp207479q. Epub 2012 Jan 4.
Glycosylation is a frequent post-translational modification of proteins that has been shown to influence protein structure and function. Glycosylation of hydroxyproline occurs widely in plants, but is absent in humans and animals. Previous experimental studies on model amides have indicated that α/β-galactosylation of 4R-hydroxyproline (Hyp) has no measurable effect on prolyl amide isomerization, while a 7% increase in the trans isomer population, as well as a 25-50% increase in the isomerization rate, was observed for the 4S stereoisomer (hyp). In this work, molecular dynamics simulations in explicit water and implicit solvent DFT optimizations are used to examine the structure of the hydroxyproline-O-galactosyl linkage and the effect of glycosylation on the structure and cis/trans isomerization of the peptide backbone. The calculations show two major minima with respect to the glycosidic linkage in all compounds. The C(γ)-exo puckering observed in 4R compounds projects the sugar away from the peptide backbone, while a twisted C(γ)-endo/C(β)-exo pucker in the 4S compounds brings the peptide and sugar rings together and leads to an intramolecular hydrogen-bonding interaction that is sometimes bridged by a water molecule. This hydrogen bond changes the conformation of the peptide backbone, inducing a favorable n → π* interaction between the oxygen lone pair from the prolyl N-terminal amide and the C═O, which explains the observed increase in trans isomer population in α/β-galactosylated 4S-hydroxyproline. Our results provide the first molecular level information about this important glycosidic linkage, as well as provide an explanation for the previously observed increase in trans isomer population in 4S-hyp compounds. Moreover, this study provides evidence that sugar-mediated long-range hydrogen bonding between hydroxyl groups and the carbonyl peptide backbone can modify the properties of N-terminal prolyl cis/trans isomerization in peptides.
糖基化是蛋白质的一种常见翻译后修饰,已被证明会影响蛋白质的结构和功能。羟脯氨酸的糖基化广泛存在于植物中,但在人和动物中不存在。之前对模型酰胺的实验研究表明,4R-羟脯氨酸(Hyp)的α/β-半乳糖基化对脯氨酸酰胺异构化没有可测量的影响,而 4S 立体异构体(hyp)的反式异构体群体增加了 7%,异构化速率也增加了 25-50%。在这项工作中,使用显式水和隐式溶剂 DFT 优化的分子动力学模拟来研究羟脯氨酸-O-半乳糖键的结构以及糖基化对肽骨架结构和顺/反异构化的影响。计算结果表明,所有化合物的糖苷键都有两个主要的极小值。在 4R 化合物中观察到的 C(γ)-外式构象使糖远离肽骨架,而在 4S 化合物中扭曲的 C(γ)-内式/C(β)-外式构象使肽和糖环靠近并导致分子内氢键相互作用,有时由一个水分子桥接。这种氢键改变了肽骨架的构象,诱导脯氨酸 N 端酰胺的氧孤对与 C═O 之间产生有利的 n → π*相互作用,这解释了在 α/β-半乳糖化 4S-羟脯氨酸中观察到的反式异构体群体增加的原因。我们的结果提供了有关这种重要糖苷键的第一个分子水平信息,并为之前观察到的 4S-hyp 化合物中反式异构体群体增加提供了解释。此外,这项研究提供了证据表明,糖介导的羟基与羰基肽骨架之间的远程氢键可以改变 N 端脯氨酸顺/反异构化在肽中的性质。