Nanoelectronic Devices Laboratory, Ecole Polytechnique Fédéral de Lausanne (EPFL), 1015 Lausanne, Switzerland.
ACS Nano. 2012 Jan 24;6(1):256-64. doi: 10.1021/nn203517w. Epub 2011 Dec 19.
Nanoelectromechanical systems (NEMS) as integrated components for ultrasensitive sensing, time keeping, or radio frequency applications have driven the search for scalable nanomechanical transduction on-chip. Here, we present a hybrid silicon-on-insulator platform for building NEM oscillators in which fin field effect transistors (FinFETs) are integrated into nanomechanical silicon resonators. We demonstrate transistor amplification and signal mixing, coupled with mechanical motion at very high frequencies (25-80 MHz). By operating the transistor in the subthreshold region, the power consumption of resonators can be reduced to record-low nW levels, opening the way for the parallel operation of hundreds of thousands of NEM oscillators. The electromechanical charge modulation due to the field effect in a resonant transistor body constitutes a scalable nanomechanical motion detection all-on-chip and at room temperature. The new class of tunable NEMS represents a major step toward their integration in resonator arrays for applications in sensing and signal processing.
纳米机电系统(NEMS)作为超灵敏传感、计时或射频应用的集成组件,推动了可扩展纳米机械转导的研究。在这里,我们提出了一种混合硅片上的绝缘体平台,用于构建 NEM 振荡器,其中鳍场效应晶体管(FinFET)集成到纳米机械硅谐振器中。我们展示了晶体管放大和信号混合,以及非常高的频率(25-80MHz)的机械运动。通过将晶体管在亚阈值区工作,可以将谐振器的功耗降低到创纪录的低纳瓦水平,为数十万 NEM 振荡器的并行运行开辟了道路。由于谐振晶体管体中的场效应引起的机电电荷调制构成了可扩展的纳米机械运动检测,全部在片上和室温下进行。这种新型可调谐 NEMS 代表了它们在谐振器阵列中的集成方面迈出的重要一步,可用于传感和信号处理。