Department of Mechanical Engineering, the University of Texas at Austin, Austin, Texas 78712, United States.
ACS Nano. 2013 Apr 23;7(4):3476-83. doi: 10.1021/nn400363x. Epub 2013 Mar 20.
Bottom-up assembling of Micro/Nano Electromechanical System (MEMS/NEMS) devices from nanoscale building blocks is highly desirable but extremely difficult to achieve. In this work, we report innovative mechanisms for precision assembly and actuation of arrays of nanowire NEMS devices that can synchronously oscillate between two designated positions for over 4000 cycles. The assembly and actuation mechanisms are based on unique magnetic interactions between nanoentities with perpendicular magnetic anisotropy (PMA) and electric-tweezer manipulation, our recent invention. Quantitative analysis of the dynamics of torques involved in the nano-oscillators reveals that the induced electrostatic torques due to the external electric fields between metallic NEMS components play a significant role in the mechanical actuation. These new findings are expected to inspire new in situ assembly and actuation strategies in the general field of NEMS devices such as nanomechanical switches for toggling on/off circuits and nanoresonators for biochemical sensors and radio frequency communication.
从纳米级构建块自下而上组装微/纳机电系统 (MEMS/NEMS) 器件是非常可取的,但极难实现。在这项工作中,我们报告了用于精确组装和驱动纳米线 NEMS 器件阵列的创新机制,这些器件可以在两个指定位置之间同步振荡超过 4000 个周期。组装和驱动机制基于具有垂直各向异性 (PMA) 的纳米实体之间的独特磁相互作用以及电镊子操作,这是我们最近的发明。对纳米振荡器中涉及的力矩动力学的定量分析表明,由于金属 NEMS 组件之间的外部电场引起的感应静电力矩在机械致动中起着重要作用。这些新发现有望为 NEMS 器件领域的一般原位组装和致动策略提供新的启示,例如用于切换开/关电路的纳米机械开关和用于生化传感器和射频通信的纳米谐振器。