Department of Chemistry, Seoul National University, Seoul 151-747, Korea.
Anal Chem. 2012 Jan 17;84(2):901-7. doi: 10.1021/ac2016322. Epub 2011 Dec 30.
We propose a new method for performing in-channel electrochemical detection under a high electric field using a polyelectrolytic gel salt bridge (PGSB) integrated in the middle of the electrophoretic separation channel. The finely tuned placement of a gold working electrode and the PGSB on an equipotential surface in the microchannel provided highly sensitive electrochemical detection without any deterioration in the separation efficiency or interference of the applied electric field. To assess the working principle, the open circuit potentials between gold working electrodes and the reference electrode at varying distances were measured in the microchannel under electrophoretic fields using an electrically isolated potentiostat. In addition, "in-channel" cyclic voltammetry confirmed the feasibility of electrochemical detection under various strengths of electric fields (∼400 V/cm). Effective separation on a microchip equipped with a PGSB under high electric fields was demonstrated for the electrochemical detection of biological compounds such as dopamine and catechol. The proposed "in-channel" electrochemical detection under a high electric field enables wider electrochemical detection applications in microchip electrophoresis.
我们提出了一种在高电场下使用聚电解质凝胶盐桥(PGSB)在电泳分离通道中间进行通道内电化学检测的新方法。在微通道中的等电位表面上精细调整的金工作电极和 PGSB 的位置提供了高灵敏度的电化学检测,而不会降低分离效率或干扰施加的电场。为了评估工作原理,使用电隔离电位计在电泳场下测量了微通道中不同距离处金工作电极和参比电极之间的开路电位。此外,“通道内”循环伏安法证实了在各种电场强度(约 400 V/cm)下进行电化学检测的可行性。在配备 PGSB 的微芯片上进行高电场下的有效分离,为电化学检测生物化合物(如多巴胺和儿茶酚)提供了可能。该方法为在微芯片电泳中进行更广泛的电化学检测应用提供了一种新的途径。