Department of Biomedical Engineering, Vanderbilt University VU Station B 351631 Nashville, Tennessee 37235, USA.
Langmuir. 2012 Jan 31;28(4):2187-93. doi: 10.1021/la203903a. Epub 2011 Dec 16.
The ring pattern resulting from the unique microfluidics in an evaporating coffee drop is a well-studied mass transport phenomenon generating interest in the research community mostly from a mechanistic perspective. In this report, we describe how biomarker-induced particle-particle assemblies, magnetic separation, and evaporation-driven ring formation can be combined for simple pathogen detection. In this assay design, the presence of biomarkers causes self-assembly of a magnetic nanoparticle and a fluorescently labeled micrometer-sized particle. A small spherical magnet under the center of the drop prevents these assemblies from migrating to the drop's edge while a nonreactive control particle flows to the edge forming a ring pattern. Thus the presence or absence of biomarker results in distinctly different distributions of particles in the dried drop. Proof-of-principle studies using poly-L-histidine, a peptide mimic of the malaria biomarker pfHRPII, show that the predicted particle distributions occur with a limit of detection of approximately 200-300 nM.
在蒸发的咖啡液滴中独特的微流控产生的环形图案是一种经过充分研究的传质现象,主要引起了研究界从机械角度的兴趣。在本报告中,我们描述了如何将生物标志物诱导的颗粒-颗粒组装、磁分离和蒸发驱动的环形形成结合起来,用于简单的病原体检测。在该分析设计中,生物标志物的存在导致磁性纳米颗粒和荧光标记的微米级颗粒自组装。液滴中心下方的一个小球形磁铁阻止这些组装体迁移到液滴边缘,而一个非反应性的对照颗粒流向边缘形成环形图案。因此,生物标志物的存在与否导致在干燥液滴中颗粒的分布明显不同。使用聚-L-组氨酸(疟疾生物标志物 pfHRPII 的肽模拟物)进行的原理验证研究表明,预测的颗粒分布的检测限约为 200-300 nM。