Food Safety and Intervention Technologies Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038, USA.
Annu Rev Food Sci Technol. 2012;3:125-42. doi: 10.1146/annurev-food-022811-101132. Epub 2011 Dec 9.
Cold plasma is a novel nonthermal food processing technology that uses energetic, reactive gases to inactivate contaminating microbes on meats, poultry, fruits, and vegetables. This flexible sanitizing method uses electricity and a carrier gas, such as air, oxygen, nitrogen, or helium; antimicrobial chemical agents are not required. The primary modes of action are due to UV light and reactive chemical products of the cold plasma ionization process. A wide array of cold plasma systems that operate at atmospheric pressures or in low pressure treatment chambers are under development. Reductions of greater than 5 logs can be obtained for pathogens such as Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus. Effective treatment times can range from 120 s to as little as 3 s, depending on the food treated and the processing conditions. Key limitations for cold plasma are the relatively early state of technology development, the variety and complexity of the necessary equipment, and the largely unexplored impacts of cold plasma treatment on the sensory and nutritional qualities of treated foods. Also, the antimicrobial modes of action for various cold plasma systems vary depending on the type of cold plasma generated. Optimization and scale up to commercial treatment levels require a more complete understanding of these chemical processes. Nevertheless, this area of technology shows promise and is the subject of active research to enhance efficacy.
冷等离子体是一种新颖的非热食品加工技术,利用高能、活性气体来灭活肉类、家禽、水果和蔬菜上的污染微生物。这种灵活的消毒方法使用电和载气(如空气、氧气、氮气或氦气);不需要使用抗菌化学剂。主要作用模式是由于冷等离子体电离过程中的紫外光和反应性化学产物。正在开发各种在大气压下运行或在低压处理室中运行的冷等离子体系统。对于病原体,如沙门氏菌、大肠杆菌 O157:H7、李斯特菌单核细胞增生症和金黄色葡萄球菌,可以获得大于 5 个对数的减少。有效处理时间可以从 120 秒到 3 秒不等,具体取决于处理的食品和处理条件。冷等离子体的关键限制是技术发展相对较早、所需设备的多样性和复杂性,以及冷等离子体处理对处理食品感官和营养质量的影响在很大程度上尚未得到探索。此外,各种冷等离子体系统的抗菌作用模式取决于所产生的冷等离子体的类型。要进行优化和扩大到商业处理水平,需要更全面地了解这些化学过程。尽管如此,该技术领域显示出了前景,并且是增强功效的活跃研究主题。