de Oliveira Amanda Cristina Dias, Ali Sher, Corassin Carlos Humberto, Ullah Sana, Pereira Karina Nascimento, Walsh James Leon, Hojnik Nataša, de Oliveira Carlos Augusto Fernandes
Laboratory of Food Microbiology and Mycotoxicology, Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil.
School of Physics, Engineering and Technology, University of York, York, United Kingdom.
Front Microbiol. 2025 Jan 3;15:1502915. doi: 10.3389/fmicb.2024.1502915. eCollection 2024.
Microbial contamination remains a vital challenge across the food production chain, particularly due to mycotoxins-secondary metabolites produced by several genera of fungi such as , and . These toxins, including aflatoxins, fumonisins, ochratoxins, and trichothecenes (nivalenol, deoxynivalenol, T2, HT-2). These contaminants pose severe risks to human and animal health, with their potential to produce a variety of different toxic effects. Notably, up to 50% of global cereal production is affected by mycotoxin contamination, leading to significant economic losses. Current research focuses on innovative technologies to mitigate mycotoxins, with cold atmospheric pressure plasma emerging as a promising decontamination method.
This systematic review aimed at describing recent advances in the application of cold atmospheric plasma for the decontamination of toxigenic fungi and mycotoxins.
Cold atmospheric plasma offers a sustainable and cost effective solution to preserve food quality while inactivating toxigenic fungi and degrading mycotoxins. Through the generation of reactive oxygen and nitrogen species, cold plasma disrupts fungal cell integrity, hinders spore germination, and inhibits toxin biosynthesis. Additionally, cold atmospheric plasma-driven degradation of mycotoxins involves structural modifications, breaking key molecular bonds that reduce toxicity. The effectiveness of cold plasma depends on operational parameters and the specific characteristics of the treated food, with notable efficacy in degrading aflatoxin B and deoxynivalenol by converting them into less toxic substances and inhibiting their spores and DNA responsible for their biosynthesis. While the data demonstrates that cold atmospheric plasma has minimal impact on food composition, further research is needed to fully assess the nature of the degradation products of mycotoxins, its influence on food quality attributes and to optimize application strategies for different products.
微生物污染仍然是整个食品生产链中的一个重大挑战,特别是由于霉菌毒素——由几种真菌属产生的次生代谢产物,如 、 和 。这些毒素包括黄曲霉毒素、伏马菌素、赭曲霉毒素和单端孢霉烯族毒素(雪腐镰刀菌烯醇、脱氧雪腐镰刀菌烯醇、T2、HT - 2)。这些污染物对人类和动物健康构成严重风险,有可能产生各种不同的毒性作用。值得注意的是,全球高达50%的谷物产量受到霉菌毒素污染的影响,导致重大经济损失。目前的研究集中在减轻霉菌毒素的创新技术上,冷常压等离子体作为一种有前途的去污方法正在兴起。
本系统综述旨在描述冷常压等离子体在产毒真菌和霉菌毒素去污应用方面的最新进展。
冷常压等离子体提供了一种可持续且具有成本效益的解决方案,既能保持食品质量,又能使产毒真菌失活并降解霉菌毒素。通过产生活性氧和氮物种,冷等离子体破坏真菌细胞完整性,阻碍孢子萌发,并抑制毒素生物合成。此外,冷常压等离子体驱动的霉菌毒素降解涉及结构修饰,打破关键分子键以降低毒性。冷等离子体的有效性取决于操作参数和被处理食品的具体特性,在降解黄曲霉毒素B和脱氧雪腐镰刀菌烯醇方面具有显著效果,通过将它们转化为毒性较小的物质并抑制负责其生物合成的孢子和DNA来实现。虽然数据表明冷常压等离子体对食品成分的影响最小,但仍需要进一步研究以全面评估霉菌毒素降解产物的性质、其对食品质量属性的影响,并优化针对不同产品的应用策略。