Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905, USA.
Med Phys. 2011 Dec;38(12):6371-9. doi: 10.1118/1.3658568.
To evaluate the image quality of virtual monochromatic images synthesized from dual-source dual-energy computed tomography (CT) in comparison with conventional polychromatic single-energy CT for the same radiation dose.
In dual-energy CT, besides the material-specific information, one may also synthesize monochromatic images at different energies, which can be used for routine diagnosis similar to conventional polychromatic single-energy images. In this work, the authors assessed whether virtual monochromatic images generated from dual-source CT scanners had an image quality similar to that of polychromatic single-energy images for the same radiation dose. First, the authors provided a theoretical analysis of the optimal monochromatic energy for either the minimum noise level or the highest iodine contrast to noise ratio (CNR) for a given patient size and dose partitioning between the low- and high-energy scans. Second, the authors performed an experimental study on a dual-source CT scanner to evaluate the noise and iodine CNR in monochromatic images. A thoracic phantom with three sizes of attenuating rings was used to represent four adult sizes. For each phantom size, three dose partitionings between the low-energy (80 kV) and the high-energy (140 kV) scans were used in the dual-energy scan. Monochromatic images at eight energies (40 to 110 keV) were generated for each scan. Phantoms were also scanned at each of the four polychromatic single energy (80, 100, 120, and 140 kV) with the same radiation dose.
The optimal virtual monochromatic energy depends on several factors: phantom size, partitioning of the radiation dose between low- and high-energy scans, and the image quality metrics to be optimized. With the increase of phantom size, the optimal monochromatic energy increased. With the increased percentage of radiation dose on the low energy scan, the optimal monochromatic energy decreased. When maximizing the iodine CNR in monochromatic images, the optimal energy was lower than that when minimizing noise level. When the total radiation dose was equally distributed between low and high energy in dual-energy scans, for minimum noise, the optimal energies were 68, 71, 74, and 77 keV for small, medium, large, and extra-large (xlarge) phantoms, respectively; for maximum iodine CNR, the optimal energies were 66, 68, 70, 72 keV. With the optimal monochromatic energy, the noise level was similar to and the CNR was better than that in a single-energy scan at 120 kV for the same radiation dose. Compared to an 80 kV scan, however, the iodine CNR in monochromatic images was lower for the small, medium, and large phantoms.
In dual-source dual-energy CT, optimal virtual monochromatic energy depends on patient size, dose partitioning, and the image quality metric optimized. With the optimal monochromatic energy, the noise level was similar to and the iodine CNR was better than that in 120 kV images for the same radiation dose. Compared to single-energy 80 kV images, the iodine CNR in virtual monochromatic images was lower for small to large phantom sizes.
评估双源双能 CT 生成的虚拟单色图像的图像质量与相同辐射剂量的传统多色单能 CT 相比。
在双能 CT 中,除了物质特异性信息外,还可以在不同能量下合成单色图像,这些图像可用于与传统多色单能图像相似的常规诊断。在这项工作中,作者评估了对于相同的辐射剂量,来自双源 CT 扫描仪的虚拟单色图像是否具有与多色单能图像相似的图像质量。首先,作者提供了一个理论分析,以确定对于给定的患者体型和低能扫描与高能扫描之间的剂量分配,最佳的单色能量是为了最低噪声水平还是最高碘对比噪声比(CNR)。其次,作者在双源 CT 扫描仪上进行了一项实验研究,以评估单色图像中的噪声和碘 CNR。使用具有三个衰减环尺寸的胸部体模来代表四个成人尺寸。对于每个体模尺寸,在双能扫描中使用低能(80 kV)和高能(140 kV)之间的三种剂量分配。为每个扫描生成了八种能量(40 至 110 keV)的单色图像。对于每个多色单能(80、100、120 和 140 kV)的四个辐射剂量,也对体模进行了扫描。
虚拟单色最佳能量取决于几个因素:体模尺寸、低能扫描与高能扫描之间的辐射剂量分配以及要优化的图像质量指标。随着体模尺寸的增加,最佳单色能量增加。随着低能扫描中辐射剂量的百分比增加,最佳单色能量降低。当在单色图像中最大化碘 CNR 时,最佳能量低于最小化噪声水平时的最佳能量。当双能扫描中的总辐射剂量在低能和高能之间平均分配时,对于最小噪声,小、中、大、特大(xlarge)体模的最佳能量分别为 68、71、74 和 77 keV;对于最大碘 CNR,最佳能量分别为 66、68、70、72 keV。使用最佳单色能量,在相同的辐射剂量下,噪声水平与 120 kV 单能扫描相似,而 CNR 优于 120 kV 单能扫描。然而,与 80 kV 扫描相比,对于小、中、大体模,单色图像中的碘 CNR 较低。
在双源双能 CT 中,最佳虚拟单色能量取决于患者体型、剂量分配和优化的图像质量指标。使用最佳单色能量,在相同的辐射剂量下,噪声水平与 120 kV 图像相似,而碘 CNR 优于 120 kV 图像。与单能 80 kV 图像相比,小至大尺寸体模的虚拟单色图像中的碘 CNR 较低。