Institute of Medical Physics, University of Erlangen-Nürnberg, Henkestrasse 91, D-91052 Erlangen, Germany.
Med Phys. 2011 Feb;38(2):691-700. doi: 10.1118/1.3533686.
Dual energy CT (DECT) allows calculating images that show the spatial distribution of the electron density and the atomic number or, more common, images of two basis material densities. In contrast, the Hounsfield unit that is shown in standard CT images is a measure of the x-ray attenuation, which is a function of the atomic number and electron density. To acquire additional information, DECT measures the object of interest using two different detected x-ray spectra. Most clinical CT scanners realize dual energy CT by fast tube voltage switching or by dual source dual detector arrangements and therefore do not allow measuring geometrically identical lines with each spectrum. Then, it is not possible to preprocess the raw data and calculate dual energy-specific raw data sets. The combination of the information of both spectra rather needs to be carried out in image domain after image reconstruction. Compared to the ideal raw data-based dual energy approaches, those image-based DECT methods are inferior because they are not able to correctly deal with the polychromatic nature of the x-rays. This article proposes a dedicated dual energy reconstruction algorithm for inconsistent rays that correctly accounts for all spectral effects.
Material decomposition from inconsistent rays (MDIR) is an iterative method to indirectly perform raw data-based DECT even though different lines were measured for both spectra. Its iterative nature allows treating the x-ray polychromaticity correctly. The iterative process is initialized by density images that were obtained from an image-based material decomposition. Those images suffer from errors that originate from the polychromatic nature of the spectra. These errors are calculated by polychromatic forward projection of each measured line. After correction of the initial material density images, the polychromatic forward projection is repeated with more accurate material density images, yielding a more accurate error calculation. To demonstrate the proposed method, simulations and measurements were performed using clinical and preclinical dual source dual energy CT scanners.
Two iterations of MDIR are sufficient to greatly improve the qualitative and quantitative information in material density images. It is shown that banding artifacts, cupping artifacts, and mean density errors can be completely eliminated. Simulations with high geometrical inconsistency between the rays of different spectra indicate that nearly exact material decomposition is possible with MDIR. Furthermore, simulations show that the method works well in the presence of materials with K-edges within the detected spectrum. Phantom measurements using a clinical dual source CT scanner show the elimination of artifacts, which cause up to 4% mean density error.
At moderate computational burden, the proposed MDIR algorithm yields images of the same high quality as direct raw data-based DECT methods. In contrast to those, MDIR is applicable to the case of inconsistent rays, as it often occurs in clinical or preclinical CT. Compared to image-based methods MDIR reduces artifacts and improves mean density errors in material density images. All dual energy postprocessing methods that are in use today, such as bone removal, virtual noncontrast images, etc., can be applied to the images provided by MDIR.
双能 CT(DECT)允许计算显示电子密度和原子数空间分布的图像,或者更常见的是,两种基础物质密度的图像。相比之下,标准 CT 图像中显示的亨氏单位是 X 射线衰减的度量,它是原子数和电子密度的函数。为了获取额外的信息,DECT 使用两种不同的探测 X 射线光谱来测量感兴趣的物体。大多数临床 CT 扫描仪通过快速管电压切换或通过双源双探测器布置来实现双能 CT,因此不能用每个光谱测量几何上相同的线。然后,不能预处理原始数据并计算双能特定的原始数据集。组合两个光谱的信息需要在图像重建后在图像域中进行。与基于理想原始数据的双能方法相比,那些基于图像的 DECT 方法较差,因为它们不能正确处理 X 射线的多色性。本文提出了一种用于不一致射线的专用双能重建算法,该算法可以正确地考虑所有光谱效应。
来自不一致射线的材料分解(MDIR)是一种迭代方法,即使两种光谱都测量了不同的线,也可以间接执行基于原始数据的 DECT。其迭代性质允许正确处理 X 射线的多色性。该迭代过程由从基于图像的材料分解获得的密度图像初始化。这些图像受到来自光谱多色性的误差的影响。通过对每条测量线的多色性正向投影来计算这些误差。在纠正初始材料密度图像后,用更准确的材料密度图像重复多色性正向投影,得到更准确的误差计算。为了验证所提出的方法,使用临床和临床前双源双能 CT 扫描仪进行了模拟和测量。
MDIR 的两次迭代足以大大改善材料密度图像的定性和定量信息。结果表明,带纹伪影、杯状伪影和平均密度误差可以完全消除。具有不同光谱射线之间高度几何不一致的模拟表明,几乎可以实现近乎精确的材料分解。此外,模拟表明,该方法在存在检测光谱内存在 K 边的材料时效果良好。使用临床双源 CT 扫描仪进行的体模测量显示,消除了导致平均密度误差高达 4%的伪影。
在中等计算负担下,所提出的 MDIR 算法生成的图像与直接基于原始数据的 DECT 方法具有相同的高质量。与那些方法不同,MDIR 适用于不一致射线的情况,这种情况在临床或临床前 CT 中经常发生。与基于图像的方法相比,MDIR 减少了伪影并改善了材料密度图像中的平均密度误差。今天使用的所有双能后处理方法,例如骨去除、虚拟非对比图像等,可以应用于 MDIR 提供的图像。