Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA.
Med Phys. 2011 Dec;38(12):6384-94. doi: 10.1118/1.3658737.
Four-dimensional computed tomography (4D-CT) has been widely used in radiation therapy to assess patient-specific breathing motion for determining individual safety margins. However, it has two major drawbacks: low soft-tissue contrast and an excessive imaging dose to the patient. This research aimed to develop a clinically feasible four-dimensional magnetic resonance imaging (4D-MRI) technique to overcome these limitations.
The proposed 4D-MRI technique was achieved by continuously acquiring axial images throughout the breathing cycle using fast 2D cine-MR imaging, and then retrospectively sorting the images by respiratory phase. The key component of the technique was the use of body area (BA) of the axial MR images as an internal respiratory surrogate to extract the breathing signal. The validation of the BA surrogate was performed using 4D-CT images of 12 cancer patients by comparing the respiratory phases determined using the BA method to those determined clinically using the Real-time position management (RPM) system. The feasibility of the 4D-MRI technique was tested on a dynamic motion phantom, the 4D extended Cardiac Torso (XCAT) digital phantom, and two healthy human subjects.
Respiratory phases determined from the BA matched closely to those determined from the RPM: mean (± SD) difference in phase: -3.9% (± 6.4%); mean (± SD) absolute difference in phase: 10.40% (± 3.3%); mean (± SD) correlation coefficient: 0.93 (± 0.04). In the motion phantom study, 4D-MRI clearly showed the sinusoidal motion of the phantom; image artifacts observed were minimal to none. Motion trajectories measured from 4D-MRI and 2D cine-MRI (used as a reference) matched excellently: the mean (± SD) absolute difference in motion amplitude: -0.3 (± 0.5) mm. In the 4D-XCAT phantom study, the simulated "4D-MRI" images showed good consistency with the original 4D-XCAT phantom images. The motion trajectory of the hypothesized "tumor" matched excellently between the two, with a mean (± SD) absolute difference in motion amplitude of 0.5 (± 0.4) mm. 4D-MRI was able to reveal the respiratory motion of internal organs in both human subjects; superior-inferior (SI) maximum motion of the left kidney of Subject #1 and the diaphragm of Subject #2 measured from 4D-MRI was 0.88 and 1.32 cm, respectively.
Preliminary results of our study demonstrated the feasibility of a novel retrospective 4D-MRI technique that uses body area as a respiratory surrogate.
四维计算机断层扫描(4D-CT)已广泛应用于放射治疗,以评估患者特定的呼吸运动,从而确定个体安全范围。然而,它有两个主要缺点:软组织对比度低和对患者的成像剂量过大。本研究旨在开发一种临床可行的四维磁共振成像(4D-MRI)技术,以克服这些限制。
所提出的 4D-MRI 技术是通过在呼吸周期中使用快速 2D 电影-MR 成像连续采集轴图像,然后通过呼吸相位进行回顾性排序来实现的。该技术的关键组成部分是使用轴 MR 图像的体区(BA)作为内部呼吸替代物来提取呼吸信号。通过将使用 BA 方法确定的呼吸相位与使用实时位置管理(RPM)系统临床确定的呼吸相位进行比较,对 12 名癌症患者的 4D-CT 图像进行了 BA 替代物的验证。在动态运动体模、4D 扩展心脏胸(XCAT)数字体模和两名健康人体受试者上测试了 4D-MRI 技术的可行性。
从 BA 确定的呼吸相位与从 RPM 确定的呼吸相位非常匹配:相位的平均(±SD)差异为-3.9%(±6.4%);相位的平均(±SD)绝对差异为 10.40%(±3.3%);平均(±SD)相关系数为 0.93(±0.04)。在运动体模研究中,4D-MRI 清楚地显示了体模的正弦运动;观察到的图像伪影最小或没有。从 4D-MRI 和 2D 电影-MRI(用作参考)测量的运动轨迹非常吻合:运动幅度的平均(±SD)绝对差异为-0.3(±0.5)mm。在 4D-XCAT 体模研究中,模拟的“4D-MRI”图像与原始 4D-XCAT 体模图像具有很好的一致性。两个之间的假设“肿瘤”的运动轨迹非常吻合,运动幅度的平均(±SD)绝对差异为 0.5(±0.4)mm。4D-MRI 能够揭示两个人体受试者内部器官的呼吸运动;受试者 #1 的左肾和受试者 #2 的膈肌的上下(SI)最大运动分别为 0.88cm 和 1.32cm。
我们研究的初步结果表明,使用体区作为呼吸替代物的新型回顾性 4D-MRI 技术是可行的。