Suppr超能文献

具有回顾性 k 空间重排的四维磁共振成像:一项可行性研究。

Four dimensional magnetic resonance imaging with retrospective k-space reordering: a feasibility study.

作者信息

Liu Yilin, Yin Fang-Fang, Chen Nan-kuei, Chu Mei-Lan, Cai Jing

机构信息

Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710.

Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 and Brain Imaging and Analysis Center, Duke University Medical Center, Box 2737, Hock Plaza, Durham, North Carolina 27710.

出版信息

Med Phys. 2015 Feb;42(2):534-41. doi: 10.1118/1.4905044.

Abstract

PURPOSE

Current four dimensional magnetic resonance imaging (4D-MRI) techniques lack sufficient temporal/spatial resolution and consistent tumor contrast. To overcome these limitations, this study presents the development and initial evaluation of a new strategy for 4D-MRI which is based on retrospective k-space reordering.

METHODS

We simulated a k-space reordered 4D-MRI on a 4D digital extended cardiac-torso (XCAT) human phantom. A 2D echo planar imaging MRI sequence [frame rate (F) = 0.448 Hz; image resolution (R) = 256 × 256; number of k-space segments (NKS) = 4] with sequential image acquisition mode was assumed for the simulation. Image quality of the simulated "4D-MRI" acquired from the XCAT phantom was qualitatively evaluated, and tumor motion trajectories were compared to input signals. In particular, mean absolute amplitude differences (D) and cross correlation coefficients (CC) were calculated. Furthermore, to evaluate the data sufficient condition for the new 4D-MRI technique, a comprehensive simulation study was performed using 30 cancer patients' respiratory profiles to study the relationships between data completeness (Cp) and a number of impacting factors: the number of repeated scans (NR), number of slices (NS), number of respiratory phase bins (NP), NKS, F, R, and initial respiratory phase at image acquisition (P0). As a proof-of-concept, we implemented the proposed k-space reordering 4D-MRI technique on a T2-weighted fast spin echo MR sequence and tested it on a healthy volunteer.

RESULTS

The simulated 4D-MRI acquired from the XCAT phantom matched closely to the original XCAT images. Tumor motion trajectories measured from the simulated 4D-MRI matched well with input signals (D = 0.83 and 0.83 mm, and CC = 0.998 and 0.992 in superior-inferior and anterior-posterior directions, respectively). The relationship between Cp and NR was found best represented by an exponential function (CP=1001-e(-0.18NR) , when NS = 30, NP = 6). At a CP value of 95%, the relative error in tumor volume was 0.66%, indicating that NR at a CP value of 95% (NR,95%) is sufficient. It was found that NR,95% is approximately linearly proportional to NP (r = 0.99), and nearly independent of all other factors. The 4D-MRI images of the healthy volunteer clearly demonstrated respiratory motion in the diaphragm region with minimal motion induced noise or aliasing.

CONCLUSIONS

It is feasible to generate respiratory correlated 4D-MRI by retrospectively reordering k-space based on respiratory phase. This new technology may lead to the next generation 4D-MRI with high spatiotemporal resolution and optimal tumor contrast, holding great promises to improve the motion management in radiotherapy of mobile cancers.

摘要

目的

当前的四维磁共振成像(4D-MRI)技术缺乏足够的时间/空间分辨率和一致的肿瘤对比度。为克服这些限制,本研究提出并初步评估了一种基于回顾性k空间重排的4D-MRI新策略。

方法

我们在4D数字扩展心脏-躯干(XCAT)人体模型上模拟了k空间重排的4D-MRI。模拟时假定采用二维回波平面成像MRI序列[帧率(F)=0.448Hz;图像分辨率(R)=256×256;k空间段数(NKS)=4],并采用顺序图像采集模式。对从XCAT模型获取的模拟“4D-MRI”图像质量进行定性评估,并将肿瘤运动轨迹与输入信号进行比较。特别地,计算了平均绝对幅度差(D)和互相关系数(CC)。此外,为评估新4D-MRI技术的数据充分条件,利用30例癌症患者的呼吸曲线进行了全面的模拟研究,以研究数据完整性(Cp)与多个影响因素之间的关系:重复扫描次数(NR)、层数(NS)、呼吸相位区间数(NP)、NKS、F、R以及图像采集时的初始呼吸相位(P0)。作为概念验证,我们在T2加权快速自旋回波MR序列上实现了所提出的k空间重排4D-MRI技术,并在一名健康志愿者身上进行了测试。

结果

从XCAT模型获取的模拟4D-MRI与原始XCAT图像紧密匹配。从模拟4D-MRI测量的肿瘤运动轨迹与输入信号匹配良好(在上下和前后方向上,D分别为0.83和0.83mm,CC分别为0.998和0.992)。发现Cp与NR之间的关系最好用指数函数表示(当NS = 30,NP = 6时为CP=1001-e(-0.18NR))。在Cp值为95%时,肿瘤体积的相对误差为0.66%,这表明95% Cp值时的NR(NR,95%)是足够的。发现NR,95%与NP近似呈线性比例关系(r = 0.99),且几乎与所有其他因素无关。健康志愿者的4D-MRI图像清晰显示了膈肌区域的呼吸运动,运动诱导噪声或伪影最小。

结论

通过基于呼吸相位回顾性重排k空间来生成呼吸相关的4D-MRI是可行 的。这项新技术可能会带来具有高时空分辨率和最佳肿瘤对比度的下一代4D-MRI,有望改善可移动癌症放疗中的运动管理。

相似文献

3
Four-dimensional diffusion-weighted MR imaging (4D-DWI): a feasibility study.
Med Phys. 2017 Feb;44(2):397-406. doi: 10.1002/mp.12037. Epub 2017 Jan 25.
7
Respiratory motion-resolved, self-gated 4D-MRI using rotating cartesian k-space (ROCK).
Med Phys. 2017 Apr;44(4):1359-1368. doi: 10.1002/mp.12139. Epub 2017 Mar 11.
9
Stable and efficient retrospective 4D-MRI using non-uniformly distributed quasi-random numbers.
Phys Med Biol. 2018 Mar 22;63(7):075002. doi: 10.1088/1361-6560/aab342.
10
Four-dimensional magnetic resonance imaging using axial body area as respiratory surrogate: initial patient results.
Int J Radiat Oncol Biol Phys. 2014 Mar 15;88(4):907-12. doi: 10.1016/j.ijrobp.2013.11.245. Epub 2014 Jan 17.

引用本文的文献

1
Internal Target Volume Estimation for Liver Cancer Radiation Therapy Using an Ultra Quality 4-Dimensional Magnetic Resonance Imaging.
Adv Radiat Oncol. 2025 Mar 29;10(6):101774. doi: 10.1016/j.adro.2025.101774. eCollection 2025 Jun.
2
Dosimetric investigation of multi-parametric 4D-MRI for radiotherapy in liver cancer.
Radiat Oncol. 2025 Apr 11;20(1):51. doi: 10.1186/s13014-025-02600-3.
3
Multi-parametric MRI for radiotherapy simulation.
Med Phys. 2023 Aug;50(8):5273-5293. doi: 10.1002/mp.16256. Epub 2023 Feb 9.
4
Motion robust 4D-MRI sorting based on anatomic feature matching: A digital phantom simulation study.
Radiat Med Prot. 2020 Mar;1(1):41-47. doi: 10.1016/j.radmp.2020.01.003. Epub 2020 Mar 10.
7
MRI super-resolution via realistic downsampling with adversarial learning.
Phys Med Biol. 2021 Oct 5;66(20). doi: 10.1088/1361-6560/ac232e.
8
OFx: A method of 4D image construction from free-breathing non-gated MRI slice acquisitions of the thorax via optical flux.
Med Image Anal. 2021 Aug;72:102088. doi: 10.1016/j.media.2021.102088. Epub 2021 Apr 25.
9
Slice-stacking T2-weighted MRI for fast determination of internal target volume for liver tumor.
Quant Imaging Med Surg. 2021 Jan;11(1):32-42. doi: 10.21037/qims-20-41.
10
Virtual clinical trials in medical imaging: a review.
J Med Imaging (Bellingham). 2020 Jul;7(4):042805. doi: 10.1117/1.JMI.7.4.042805. Epub 2020 Apr 11.

本文引用的文献

1
Four-dimensional magnetic resonance imaging using axial body area as respiratory surrogate: initial patient results.
Int J Radiat Oncol Biol Phys. 2014 Mar 15;88(4):907-12. doi: 10.1016/j.ijrobp.2013.11.245. Epub 2014 Jan 17.
4
Respiratory amplitude guided 4-dimensional magnetic resonance imaging.
Int J Radiat Oncol Biol Phys. 2013 May 1;86(1):198-204. doi: 10.1016/j.ijrobp.2012.12.014. Epub 2013 Feb 13.
5
Advances in 4D radiation therapy for managing respiration: part I - 4D imaging.
Z Med Phys. 2012 Dec;22(4):258-71. doi: 10.1016/j.zemedi.2012.06.009. Epub 2012 Jul 10.
8
Low-dose 4DCT reconstruction via temporal nonlocal means.
Med Phys. 2011 Mar;38(3):1359-65. doi: 10.1118/1.3547724.
9
4D XCAT phantom for multimodality imaging research.
Med Phys. 2010 Sep;37(9):4902-15. doi: 10.1118/1.3480985.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验